202 research outputs found

    Estimating rates of carriage acquisition and clearance and competitive ability for pneumococcal serotypes in Kenya with a Markov transition model.

    No full text
    BACKGROUND: There are more than 90 serotypes of Streptococcus pneumoniae, with varying biologic and epidemiologic properties. Animal studies suggest that carriage induces an acquired immune response that reduces duration of colonization in a nonserotype-specific fashion. METHODS: We studied pneumococcal nasopharyngeal carriage longitudinally in Kenyan children 3-59 months of age, following up positive swabs at days 2, 4, 8, 16, and 32 and then monthly thereafter until 2 swabs were negative for the original serotype. As previously reported, 1868/2840 (66%) of children swabbed at baseline were positive. We estimated acquisition, clearance, and competition parameters for 27 serotypes using a Markov transition model. RESULTS: Point estimates of type-specific acquisition rates ranged from 0.00025/d (type 1) to 0.0031/d (type 19F). Point estimates of time to clearance (inverse of type-specific immune clearance rate) ranged from 28 days (type 20) to 124 days (type 6A). For the serotype most resistant to competition (type 19F), acquisition of other serotypes was 52% less likely (95% confidence interval = 37%-63%) than in an uncolonized host. Fitness components (carriage duration, acquisition rate, lack of susceptibility to competition) were positively correlated with each other and with baseline prevalence, and were associated with biologic properties previously shown to associate with serotype. Duration of carriage declined with age for most serotypes. CONCLUSIONS: Common S. pneumoniae serotypes appear superior in many dimensions of fitness. Differences in rate of immune clearance are attenuated as children age and become capable of more rapid clearance of the longest-lived serotypes. These findings provide information for comparison after introduction of pneumococcal conjugate vaccine

    Rates of acquisition and clearance of pneumococcal serotypes in the nasopharynges of children in Kilifi District, Kenya.

    Get PDF
    BACKGROUND: To understand and model the impact of pneumococcal conjugate vaccines at the population level, we need to know the transmission dynamics of individual pneumococcal serotypes. We estimated serotype-specific clearance and acquisition rates of nasopharyngeal colonization among Kenyan children. METHODS: Children aged 3-59 months who were identified as carriers in a cross-sectional survey were followed-up approximately 1, 2, 4, 8, 16, and 32 days later and monthly thereafter until culture of 2 consecutive swabs yielded an alternative serotype or no pneumococcus. Serotype-specific clearance rates were estimated by exponential regression of interval-censored carriage durations. Duration was estimated as the reciprocal of the clearance rate, and acquisition rates were estimated on the basis of prevalence and duration, assuming an equilibrium state. RESULTS: Of 2840 children sampled between October 2006 and December 2008, 1868 were carriers. The clearance rate was 0.032 episodes/day (95% confidence interval [CI], .030-.034), for a carriage duration of 31.3 days, and the rate varied by serotype (P< .0005). Carriage durations for the 28 serotypes with ≄ 10 carriers ranged from 6.7 to 50 days. Clearance rates increased with year of age, adjusted for serotype (hazard ratio, 1.21; 95% CI, 1.15-1.27). The acquisition rate was 0.061 episodes/day (95% CI, .055-.067), which did not vary with age. Serotype-specific acquisition rates varied from 0.0002 to 0.0022 episodes/day. Serotype-specific acquisition rates correlated with prevalence (r=0.91; P< .00005) and with acquisition rates measured in a separate study involving 1404 newborns in Kilifi (r=0.87; P< .00005). CONCLUSIONS: The large sample size and short swabbing intervals provide a precise description of the prevalence, duration, and acquisition of carriage of 28 pneumococcal serotypes. In Kilifi, young children experience approximately 8 episodes of carriage per year. The declining prevalence with age is attributable to increasing clearance rates

    Pneumococcal Capsular Polysaccharide Structure Predicts Serotype Prevalence

    Get PDF
    There are 91 known capsular serotypes of Streptococcus pneumoniae. The nasopharyngeal carriage prevalence of particular serotypes is relatively stable worldwide, but the host and bacterial factors that maintain these patterns are poorly understood. Given the possibility of serotype replacement following vaccination against seven clinically important serotypes, it is increasingly important to understand these factors. We hypothesized that the biochemical structure of the capsular polysaccharides could influence the degree of encapsulation of different serotypes, their susceptibility to killing by neutrophils, and ultimately their success during nasopharyngeal carriage. We sought to measure biological differences among capsular serotypes that may account for epidemiological patterns. Using an in vitro assay with both isogenic capsule-switch variants and clinical carriage isolates, we found an association between increased carriage prevalence and resistance to non-opsonic neutrophil-mediated killing, and serotypes that were resistant to neutrophil-mediated killing tended to be more heavily encapsulated, as determined by FITC-dextran exclusion. Next, we identified a link between polysaccharide structure and carriage prevalence. Significantly, non-vaccine serotypes that have become common in vaccinated populations tend to be those with fewer carbons per repeat unit and low energy expended per repeat unit, suggesting a novel biological principle to explain patterns of serotype replacement. More prevalent serotypes are more heavily encapsulated and more resistant to neutrophil-mediated killing, and these phenotypes are associated with the structure of the capsular polysaccharide, suggesting a direct relationship between polysaccharide biochemistry and the success of a serotype during nasopharyngeal carriage and potentially providing a method for predicting serotype replacement

    The Prevalence and Risk Factors for Pneumococcal Colonization of the Nasopharynx among Children in Kilifi District, Kenya

    Get PDF
    BACKGROUND: Pneumococcal conjugate vaccines (PCV) reduce nasopharyngeal carriage of vaccine-serotype pneumococci but increase in the carriage of non-vaccine serotypes. We studied the epidemiology of carriage among children 3-59 months old before vaccine introduction in Kilifi, Kenya. METHODS: In a rolling cross-sectional study from October 2006 to December 2008 we approached 3570 healthy children selected at random from the population register of the Kilifi Health and Demographic Surveillance System and 134 HIV-infected children registered at a specialist clinic. A single nasopharyngeal swab was transported in STGG and cultured on gentamicin blood agar. A single colony of pneumococcus was serotyped by Quellung reaction. RESULTS: Families of 2840 children in the population-based sample and 99 in the HIV-infected sample consented to participate; carriage prevalence was 65.8% (95% CI, 64.0-67.5%) and 76% (95% CI, 66-84%) in the two samples, respectively. Carriage prevalence declined progressively with age from 79% at 6-11 months to 51% at 54-59 months (p<0.0005). Carriage was positively associated with coryza (Odds ratio 2.63, 95%CI 2.12-3.25) and cough (1.55, 95%CI 1.26-1.91) and negatively associated with recent antibiotic use (0.53 95%CI 0.34-0.81). 53 different serotypes were identified and 42% of isolates were of serotypes contained in the 10-valent PCV. Common serotypes declined in prevalence with age while less common serotypes did not. CONCLUSION: Carriage prevalence in children was high, serotypes were diverse, and the majority of strains were of serotypes not represented in the 10-valent PCV. Vaccine introduction in Kenya will provide a natural test of virulence for the many circulating non-vaccine serotypes

    Preoperative risk stratification in endometrial cancer (ENDORISK) by a Bayesian network model: A development and validation study

    Get PDF
    Background: Bayesian networks (BNs) are machine-learning-based computational models that visualize causal relationships and provide insight into the processes underlying disease progression, closely resembling clinical decision-making. Preoperative identification of patients at risk for lymph node metastasis (LNM) is challenging in endometrial cancer, and although several biomarkers are related to LNM, none of them are incorporated in clinical practice. The aim of this study was to develop and externally validate a preoperative BN to predict LNM and outcome in endometrial cancer patients.Methods and findings: Within the European Network for Individualized Treatment of Endometrial Cancer (ENI-TEC), we performed a retrospective multicenter cohort study including 763 patients, median age 65 years (interquartile range [IQR] 58-71), surgically treated for endometrial cancer between February 1995 and August 2013 at one of the 10 participating European hospitals. A BN was developed using score-based machine learning in addition to expert knowledge. Our main outcome measures were LNM and 5-year disease-specific survival (DSS). Preoperative clinical, histopathological, and molecular biomarkers were included in the network. External validation was performed using 2 prospective study cohorts: the Molecular Markers in Treatment in Endometrial Cancer (MoMaTEC) study cohort, including 446 Norwegian patients, median age 64 years (IQR 59-74), treated between May 2001 and 2010; and the PIpelle Prospective ENDOmetrial carcinoma (PIPENDO) study cohort, including 384 Dutch patients, median age 66 years (IQR 60-73), treated between September 2011 and December 2013. A BN called ENDORISK (preoperative risk stratification in endometrial cancer) was developed including the following predictors: preoperative tumor grade; immunohistochemical expression of estrogen receptor (ER), progesterone receptor (PR), p53, and L1 cell adhesion molecule (L1CAM); cancer antigen 125 serum level; thrombocyte count; imaging results on lymphadenopathy; and cervical cytology. In the MoMaTEC cohort, the area under the curve (AUC) was 0.82 (95% confidence interval [CI] 0.76-0.88) for LNM and 0.82 (95% CI 0.77-0.87) for 5-year DSS. In the PIPENDO cohort, the AUC for 5-year DSS was 0.84 (95% CI 0.78-0.90). The network was well-calibrated. In the MoMaTEC cohort, 249 patients (55.8%) were classified with Conclusions: In this study, we illustrated how BNs can be used for individualizing clinical decision-making in oncology by incorporating easily accessible and multimodal biomarkers. The network shows the complex interactions underlying the carcinogenetic process of endometrial cancer by its graphical representation. A prospective feasibility study will be needed prior to implementation in the clinic.</div

    Genetic architecture of subcortical brain structures in 38,851 individuals

    Get PDF
    Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease

    Novel genetic loci underlying human intracranial volume identified through genome-wide association

    Get PDF
    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth
    • 

    corecore