73 research outputs found

    Extensive literature review on vectors and reservoirs of AHL‐listed pathogens of molluscs

    Get PDF
    On request of the EU Commission theEFSA carried out a ExtensiveLiterature Review (ELR)to provide a list of vector species or reservoirs species of pathogens of fish, crustaceans, and molluscs, listed in Annex II to the AHL, aiming to update the Annex of Implementing Regulation (EU) 2018/1882. In this External Scientific Report,the ELR and assessment of potential vector and reservoir species is described ofthemollusc pathogenslisted in Annex II to the AHL: Marteilia refringens, Bonamia exitiosa, Bonamia ostreae, Mikrocytos mackiniand Perkinsus marinus.In total 923 research publicationswere collected for abstract screening and from these 153 were selected for further full text analysis. In the final data collection and assessment 67 relevant research publicationswere used for extracting information on vector en reservoir species of the above mollusc pathogens. The results for mollusc species for which scientific evidence indicates that a role as vector species or reservoir species is likely arepresented as tables in this report. In addition, a brief assessment has been carried out ofthe conditions under which mollusc species shall be regarded as vectors or reservoirs of diseases of mollusc listed in Annex II.info:eu-repo/semantics/publishedVersio

    Presence of Coxiella burnetii DNA in inflamed bovine cardiac valves

    Get PDF
    Background: Bacterial endocarditis is a recognised disease in humans and animals. In humans, infection with Coxiella burnetii can cause endocarditis, but this has not been investigated thoroughly in animals. Endocarditis in cattle is a common post-mortem finding in abattoirs and studies have identified Trueperella pyogenes as a major cause. Despite exposure of cattle to C. burnetii, the significance of this particular bacterium for development and progression of endocarditis has not been studied in detail. Cardiac valves of cattle affected with endocarditis (n = 100) were examined by histology, fluorescence in situ hybridization (FISH) and real time quantitative polymerase chain reaction (PCR). Serum was examined for anti-C. burnetii antibodies by enzyme-linked immunosorbent assay (ELISA). Results: Serology revealed that 70% of the cattle were positive for antibodies to C. burnetii, while PCR analysis identified 25% of endocarditis valve samples as being positive. C. burnetii was not detected by FISH, probably due to the low infection levels. Most cattle had chronic valvular vegetative endocarditis with lesions being characterised by a core of fibrous tissue covered by significant amounts of fibrin, sometimes with areas of liquefaction, and with a coagulum covering the surface. In a few cases, including the case with the highest infection level, lesions were characterized by extensive fibrosis and calcification. Histologically, bacteria other than C. burnetii were observed in most cases. Conclusions: The presence of C. burnetii DNA is relatively common in cattle affected with valvular endocarditis. The role of C. burnetii remains however unknown as lesions did not differ between C. burnetii infected and non-infected cattle and because T. pyogenes-like bacteria were present in the inflamed valves; a bacterium able to induce the observed lesions. Heart valves of normal cattle should be investigated to assess if C. burnetii may be present without preexisting lesions.</p

    Development and validation of a two-step real-time RT-PCR for the detection of eel virus European X in European eel, Anguilla anguilla

    Get PDF
    AbstractEel virus European X (EVEX) is one of the most common pathogenic viruses in farmed and wild European eel (Anguilla anguilla) in the Netherlands. The virus causes a hemorrhagic disease resulting in increased mortality rates. Cell culture and antibody-based detection of EVEX are laborious and time consuming. Therefore, a two-step real-time reverse transcriptase (RT-)PCR assay was developed for rapid detection of EVEX. Primers and probe for the assay were designed based on a sequence of the RNA polymerase or L gene of EVEX. The real-time RT-PCR assay was validated both for use with SYBR Green chemistry and for use with a TaqMan probe. The assay is sensitive, specific, repeatable, efficient and has a high r2-value. The real-time RT-PCR assay was further evaluated by testing field samples of European eels from the Netherlands, which were positive or negative for EVEX by virus isolation followed by an indirect fluorescent antibody test. The real-time RT-PCR assay allows rapid, sensitive and specific laboratory detection of EVEX in RNA extracts from 10% eel organ suspensions and cell cultures with cytopathic effects, and is a valuable contribution to the diagnosis of viral diseases of eel

    Identification and localization of the structural proteins of anguillid herpesvirus 1

    Get PDF
    Many of the known fish herpesviruses have important aquaculture species as their natural host, and may cause serious disease and mortality. Anguillid herpesvirus 1 (AngHV-1) causes a hemorrhagic disease in European eel, Anguilla anguilla. Despite their importance, fundamental molecular knowledge on fish herpesviruses is still limited. In this study we describe the identification and localization of the structural proteins of AngHV-1. Purified virions were fractionated into a capsid-tegument and an envelope fraction, and premature capsids were isolated from infected cells. Proteins were extracted by different methods and identified by mass spectrometry. A total of 40 structural proteins were identified, of which 7 could be assigned to the capsid, 11 to the envelope, and 22 to the tegument. The identification and localization of these proteins allowed functional predictions. Our findings include the identification of the putative capsid triplex protein 1, the predominant tegument protein, and the major antigenic envelope proteins. Eighteen of the 40 AngHV-1 structural proteins had sequence homologues in related Cyprinid herpesvirus 3 (CyHV-3). Conservation of fish herpesvirus structural genes seemed to be high for the capsid proteins, limited for the tegument proteins, and low for the envelope proteins. The identification and localization of the structural proteins of AngHV-1 in this study adds to the fundamental knowledge of members of the Alloherpesviridae family, especially of the Cyprinivirus genus

    Phylogeny of the Viral Hemorrhagic Septicemia Virus in European Aquaculture

    Get PDF
    <p>One of the most valuable aquaculture fish in Europe is the rainbow trout, Oncorhynchus mykiss, but the profitability of trout production is threatened by a highly lethal infectious disease, viral hemorrhagic septicemia (VHS), caused by the VHS virus (VHSV). For the past few decades, the subgenogroup Ia of VHSV has been the main cause of VHS outbreaks in European freshwater-farmed rainbow trout. Little is currently known, however, about the phylogenetic radiation of this Ia lineage into subordinate Ia clades and their subsequent geographical spread routes. We investigated this topic using the largest Ia-isolate dataset ever compiled, comprising 651 complete G gene sequences: 209 GenBank Ia isolates and 442 Ia isolates from this study. The sequences come from 11 European countries and cover the period 1971-2015. Based on this dataset, we documented the extensive spread of the Ia population and the strong mixing of Ia isolates, assumed to be the result of the Europe-wide trout trade. For example, the Ia lineage underwent a radiation into nine Ia clades, most of which are difficult to allocate to a specific geographic distribution. Furthermore, we found indications for two rapid, large-scale population growth events, and identified three polytomies among the Ia clades, both of which possibly indicate a rapid radiation. However, only about 4% of Ia haplotypes (out of 398) occur in more than one European country. This apparently conflicting finding regarding the Europe-wide spread and mixing of Ia isolates can be explained by the high mutation rate of VHSV. Accordingly, the mean period of occurrence of a single Ia haplotype was less than a full year, and we found a substitution rate of up to 7.813 × 10<sup>-4</sup> nucleotides per site per year. Finally, we documented significant differences between Germany and Denmark regarding their VHS epidemiology, apparently due to those countries' individual handling of VHS.</p

    Susceptibility of Chickens to Low Pathogenic Avian Influenza (LPAI) Viruses of Wild Bird- and Poultry-Associated Subtypes

    Get PDF
    Analysis of low pathogenic avian influenza (LPAI) viruses circulating in the Netherlands in a previous study revealed associations of specific hemagglutinin (HA) and neuraminidase (NA) subtypes with wild bird or poultry hosts. In this study, we identified putative host associations in LPAI virus internal proteins. We show that LPAI viruses isolated from poultry more frequently carried the allele A variant of the nonstructural protein (NS) gene, compared to wild bird viruses. We determined the susceptibility of chickens to wild bird-associated subtypes H3N8 and H4N6 and poultry-associated subtypes H8N4 and H9N2, carrying either NS allele A or B, in an infection experiment. We observed variations in virus shedding and replication patterns, however, these did not correlate with the predicted wild bird- or poultry-associations of the viruses. The experiment demonstrated that LPAI viruses of wild bird-associated subtypes can replicate in chickens after experimental infection, despite their infrequent detection in poultry. Although the NS1 protein is known to play a role in immune modulation, no differences were detected in the limited innate immune response to LPAI virus infection. This study contributes to a better understanding of the infection dynamics of LPAI viruses in chickens
    corecore