414 research outputs found

    Demonstrating genuine multipartite entanglement and nonseparability without shared reference frames

    Full text link
    Multipartite nonlocality is of great fundamental interest and constitutes a useful resource for many quantum information protocols. However, demonstrating it in practice, by violating a Bell inequality, can be difficult. In particular, standard experimental setups require the alignment of distant parties' reference frames, which can be challenging or impossible in practice. In this work we study the violation of certain Bell inequalities, namely the Mermin, Mermin-Klyshko and Svetlichny inequalities, without shared reference frames, when parties share a Greenberger-Horne-Zeilinger (GHZ) state. Furthermore, we analyse how these violations demonstrate genuine multipartite features of entanglement and nonlocality. For 3, 4 and 5 parties, we show that it is possible to violate these inequalities with high probability, when the parties choose their measurements from the three Pauli operators, defined only with respect to their local frames. Moreover, the probability of violation, and the amount of violation, are increased when each party chooses their measurements from the four operators describing the vertices of a tetrahedron. We also consider how many randomly chosen measurement directions are needed to violate the Bell inequalities with high probability. We see that the obtained levels of violation are sufficient to also demonstrate genuine multipartite entanglement and nonseparability. Finally, we show analytically that choosing from two measurement settings per party is sufficient to demonstrate the maximum degree of genuine multipartite entanglement and nonseparability with certainty when the parties' reference frames are aligned in one direction so that they differ only in rotations around one axis

    Hybrid Material Based on the Lindquist Polyoxometalate [W6O19]2− and the organosulfur donor o-Me2TTF: A Combined Structural and Spectroscopic Study

    No full text
    International audienceThe synthesis, crystal structure and spectroscopic properties of the hybrid radical cation salt containing oxidized o-3,4-dimethyltetrathiafulvalene (o-Me2TTF) and the Lindquist polyoxometalate anion [W6O19]2− are reported. The title salt represents the first time a Lindquist polyoxometalate has been utilized as the counter anion with this unsymmetrical member of the TTF family of derivatives. The salt crystallizes in the triclinic space group P1ÂŻ with a = 7.6211(7) Å, b = 9.5231(9) Å, c = 12.2148(11) Å, α = 105.5870(10)°, ÎČ = 106.8340(10)° and Îł = 95.6950(10)°. Resolution of the solid state structure revealed that the o-Me2TTF radical cations aggregate as isolated face-to-face dimers with intradimer interactions between neighboring sulfur atoms at distances <3.6 Å. Hydrogen bonding was also observed between hydrogen atoms bound to sp 2-hybridized carbon atoms of o-Me2TTF and bridging oxygen atoms of [W6O19]2−. Single crystal IR and Raman spectra were also collected and provide further evidence that the o-Me2TTF donors have been oxidized to their corresponding radical cationic states

    An in‐situ indentation system for high dynamic nanomechanical measurements

    Get PDF
    Nanoindentation is typically confined to quasi-static strain rates of testing. This poster presents the development of an in-situ indenter designed to measure the response of materials at high strain rates and high oscillation frequencies at the nanoscale. This builds up on the previous work that was the first to report on in-situ nanoindentation in a SEM in 2004 which eventually resulted in the founding of the company Alemnis AG, today one of the key players in in-situ high temperature and high dynamic nanoindentation. The motivation for variable strain rate studies is that this allows analysis of activation parameters of the physical deformation processes. Once the activation parameters are known, the deformation mechanism(s) can be determined and materials science approaches to improve materials performance can be developed. Ultra-high frequency nanoindentation enables high strain rate studies and high cycle fatigue tests that can be performed within reasonably short timespan. Compared to other actuation principles, piezo actuators offers very fast response time and high force density and are compatible with vacuum environments. At the technological heart of this innovation is a transducer called “SmarTip” consisting of a diamond tip mounted on miniaturized and embedded three-axis piezo-actuators and sensors. The SmarTip allows a full range displacement of 1ÎŒm along the three axes and to measure forces up to 1N. The theoretical bandwidths are up to 10kHz and 40kHz for lateral and axial displacements respectively. We aim to reach strain rates as high as 105s-1 meaning that the speed of displacement must reach 60mm/s for a displacement of 600nm. With such high ambitions, several parameters have to be taken into consideration such as resonant frequencies of the indenter, self-heating and cabling inducing spurious capacitance. This poster will report on these design aspects, instrumentation and technique development in addition to presenting initial data on high strain rate and high cycle fatigue tests at the micron scale. It is hoped that the multi-axis capabilities of the SmarTip will result in additional breakthroughs for applications on nano-tribology, fretting and more generally on the translation of dynamic mechanical analysis (DMA) to the micro/nanoscale. Acknowledgments Research work partially co-funded by the Commission for Technology and Innovation (CTI), the State Secretariat for Education, Research and the Innovation Eurostars program and project UHV

    Electron-molecular vibration coupling in (DMtTTF)Br and (o-DMTTF)2[W6O19] salts studied by vibrational spectroscopy

    No full text
    International audienceA novel 1:1 salt encompassing radical cations of DMtTTF (DMtTTF = dimethyltrimethylene-tetrathiafulvalene) and the Br−anion has been synthesized. Close inspection of the salt's solid state structure revealed the presence of quasi-isolated dimers containing DMtTTF radical cations, a specific arrangement whereby the microscopic parameters of DMtTTFradical dot+ might be studied. Analysis of the corresponding single crystal IR and Raman spectra of (DMtTTF)Br allowed us to study the material's electronic and vibrational structure and to evaluate the electron-molecular coupling constants via the isolated dimer model. Additionally, using previously published IR data, analogous calculations were performed on the salt (o-DMTTF)2[W6O19] (o-DMTTF = o-3,4-dimethyltetrathiafulvalene), which also contains well isolated dimers of o-DMTTF radical cations. These calculations revealed that the coupling constants for the unsymmetrical donors studied herein are comparable to those for symmetric TTF derivatives

    High-temperature nano-impact testing of a hard-coating system

    Get PDF
    Forging and cutting tools for high-temperature applications are often protected using hard nanostructured ceramic coatings. While a moderate amount of knowledge exists for material properties at room temperatures, significantly less is known about the system constituents at the elevated temperatures generated during service. For rational engineering design of such systems, it is therefore important to have methodologies for testing these materials to understand their properties under such conditions (i.e. high strain rate, temperature, or impact). In this work, we present our first results using a newly developed Alemnis piezo actuated nanoindenter device which utilizes dynamic indentation testing at frequencies approaching 10 kHz. A sinusoidal displacement amplitude input is provided, while a stage heater allows for sample temperatures exceeding 500 °C. Thermal drift can be minimized through high frequency, and therefore low contact time, impacts. We investigated a thin (4.65 Όm) physical vapor deposited chromium nitride (CrN) ceramic coating, which had been deposited onto plasma nitrided tool steel. Forces of approximately 400 mN were applied sinusoidally at 500 Hz using a 5 Όm diameter diamond flat-punch at room temperature, 200°C, 300°C, 400°C and 500°C. It was found that increasing the number of impacts led to plastic deformation and fatiguing of the hard ceramic coating. At 300°C a transition to increased material flow and consequently larger crater size, and crack initiation and propagation in the ceramic, was observed. These ceramic deformation results are understood using high-resolution scanning electron microscopy (HR-SEM), elastic simulations, and large scale batch processing of force-deformation data which are generated during high-frequency measurement and collected at a sampling rate of 50 kHz. The results are further put into context by understanding recently measured small-scale high-temperature fracture toughness and yield strength properties of thin CrN films. The presented results are the first for in situ high-temperature nano-impact testing, and will be useful for hard coatings industries involving high service temperatures and high impact strain rates, such as for forging processes

    Determination of Intra- and Extracellular Metabolic Adaptations of 3D Cell Cultures upon Challenges in Real-Time by NMR.

    Get PDF
    NMR flow devices provide longitudinal real-time quantitative metabolome characterisation of living cells. However, discrimination of intra- and extracellular contributions to the spectra represents a major challenge in metabolomic NMR studies. The present NMR study demonstrates the possibility to quantitatively measure both metabolic intracellular fingerprints and extracellular footprints on human control fibroblasts by using a commercially available flow tube system with a standard 5 mm NMR probe. We performed a comprehensive 3D cell culture system characterisation. Diffusion NMR was employed for intra- and extracellular metabolites separation. In addition, complementary extracellular footprints were determined. The implemented perfused NMR bioreactor system allowed the determination of 35 metabolites and intra- and extracellular separation of 19 metabolites based on diffusion rate differences. We show the reliability and sensitivity of NMR diffusion measurements to detect metabolite concentration changes in both intra- and extracellular compartments during perfusion with different selective culture media, and upon complex I inhibition with rotenone. We also demonstrate the sensitivity of extracellular footprints to determine metabolic variations at different flow rates. The current method is of potential use for the metabolomic characterisation of defect fibroblasts and for improving physiological comprehension

    High strain rate plasticity in microscale glass

    Get PDF
    Understanding the materials behavior at high strain rates is critical for the design of structures subjected to accidental overloads such as crash testing of vehicles and impact resistance of surface coatings. From a scientific perspective, experimental determination of high strain rate properties at the micro- and nano-scale will allow the bridging of time scales between atomistic simulations and experiments, leading to a direct comparison between the two methods. Despite many efforts to expand the range of micro and nanomechanical testing in terms of forces, temperatures and loading conditions, the achievable strain rates are still around 10-5 s-1 to 10-2 s-1. This limited range of strain rates is primarily due to lack of testing platforms capable of simultaneous high-speed actuation and high-speed sensing of microscale displacements and millinewton loads. This presentation will report, a piezo-based experimental methodology for conducting high strain rate in situ micropillar compression testing at rates upto ~2000/s inside a scanning electron microscope (SEM), including a brief overview of the advantages and challenges of microscale high strain rate testing compared to traditional macroscale, Kolsky bar based, high strain rate testing. Please click Additional Files below to see the full abstract

    Environmental sound monitoring using machine learning on mobile devices

    Get PDF
    This paper reports on a study to assess the feasibility of creating an intuitive environmental sound monitoring system that can be used on-location and return meaningful measurements beyond the standard LAeq. An iOS app was created using Machine Learning (ML) and Augmented Reality (AR) in conjunction with the Sennheiser AMBEO Smart Headset in order to test this. The app returns readings indicating the human, natural and mechanical sound content of the local acoustic scene, and implements four virtual sound objects which the user can place in the scene to observe their effect on the readings. Testing at various types of urban locations indicates that the app returns meaningful ratings for natural and mechanical sound, though the pattern of variation in the ratings for human sound is less clear. Adding the virtual objects largely has no significant effect aside from the car object, which significantly increases mechanical ratings. Results indicate that using ML to provide meaningful on-location sound monitoring is feasible, though the performance of the app developed could be improved given additional calibration
    • 

    corecore