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More than 140 million people live above 2,500 m a.s.l. (Penaloza

& Arias-Stella, 2007), where the partial pressure of inspired O2

is reduced because of a reduction in barometric pressure, leading

to constriction of precapillary resistance vessels in the lung. This

mechanism, known as hypoxic pulmonary vasoconstriction (HPV), is a

highly conserved adaptive response to optimize ventilation–perfusion

matching and alveolar gas exchange by diverting blood flow from

poorly ventilated to better-oxygenated areas of the lung. Global

alveolar hypoxia leads to sustained vasoconstriction and consequent

elevation in pulmonary vascular resistance (PVR) and pulmonary

artery pressure (PAP). However, exaggerated HPV in the acute setting

can predispose to high-altitude pulmonary oedema, a life-threatening

non-cardiogenic form of pulmonary oedema that can develop in non-

acclimatized healthy individuals who ascent too high, too fast (Bartsch

& Swenson, 2013).

Pulmonary vasoconstriction in acute hypoxia occurs in two phases

(Figure 1). In the first phase, hypoxia increases formation of free

radicals and associated reactive oxygen species (ROS) that lead to an

increase in intracellular calcium and contraction of pulmonary vascular

smooth muscle cells (Smith & Schumacker, 2019). In the second

phase, vasoconstriction is maintained by the ʻdouble whammy’ of a

sustained reduction in vascular NO bioavailability combined with an
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increase in endothelium-derived vasoconstrictors (Bailey et al., 2010;

Dunham-Snary et al., 2017). When the hypoxic stimulus is brief (a few

hours), HPV is completely reversible upon restoration of normoxia

or administration of supplemental O2. Intriguingly, however, as the

duration of hypoxia increases, the reversibility of HPV in response

to supplemental O2 progressively decreases. This can be explained

by vascular remodelling leading to structural changes in pulmonary

vessels that increase vascular stiffness, decrease the luminal diameter

of arteries and increase resistance to blood flow. These processes

are considered to be mediated predominantly by hypoxia-inducible

factor-1α (HIF-1 α), which is modulated by endothelin-1 and NO,

and stabilized by hydrogen peroxide arising from superoxide anion

dismutation (Pisarcik et al., 2013; Pugh, 2016; Smith & Schumacker,

2019). In addition, ROS can amplify the proliferation of fibroblasts

in the adventitial layer and promote their expansion between the

endothelium and the neointima (Aggarwal et al., 2013). Pulmonary

hypertension places an increased pressure load on the right ventricle

that, if left untreated, can progress to right heart failure and, ultimately,

premature death.

The time course at high altitude over which HPV transitions

from being acutely reversible by O2 supplementation (hyperoxia) to

irreversible is poorly characterized. It is also unknown how quickly
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F IGURE 1 Phases andmechanistic
pathways underlying HPV in humans. In the
first phase, hypoxia increases the production
of free radicals and associated ROS (primarily
superoxide anions and hydrogen peroxide) at
complex III of themitochondrial electron
transport chain. After being released to the
cytosol, superoxide is converted to hydrogen
peroxide, which activates downstream targets
that induce an increase in intracellular calcium
concentration and contraction of pulmonary
vascular smoothmuscle cells (Smith &
Schumacker, 2019). Vasoconstriction is
subsequently maintained by a reduction in
vascular NO bioavailability combinedwith an
elevation in the circulating concentration of
endothelium-derived vasoconstrictors (Bailey
et al., 2010; Dunham-Snary et al., 2017). If
HPV is maintained, HIF-1α activates a complex
signalling cascade, ultimately inducing
pulmonary vascular remodelling and fixation
of HPV (Smith & Schumacker, 2019).
Abbreviations: ET-1, endothelin-1; HIF-1α,
hypoxia-inducible factor-1α; HPV, hypoxic
pulmonary vasoconstriction; PASMCs,
pulmonary arterial smoothmuscle cells; ROS,
reactive oxygen species

the pulmonary vasculature ‘regains’ its responsiveness after returning

to the more O2-rich climes experienced at low altitude. In this issue

of Experimental Physiology, Subedi et al. (2022) investigated how

HPV and the response to supplemental O2 change over time during

ascent to high altitude. They compared non-acclimatized lowlanders

against two separate groups of Sherpas who either stayed at their

home of residence (>3,500 m a.s.l.) or left to spend 5–15 days de-

acclimatizing at lower altitudes in Kathmandu (∼1,300m). The authors

demonstrated that both non-acclimatized lowlanders and Sherpas

exhibited a reduction in PVR and PAP in response to supplemental

O2 during ascent to 5,050 m over a duration of 8–10 days. However,

after an additional 14 days at 5,050 m, the pulmonary vascular

responsiveness to O2 was almost abolished and comparable to that

exhibited by fully acclimatized Sherpas. Of note, after ∼26 days at

5,050 m, more severe hypoxia (or hyperoxia) had no additional effect

on HPV in lowlanders or either group of Sherpas, implying structural

changes in the pulmonary vasculature over the longer term.

The study by Subedi et al. (2022) concurs with Luks et al. (2017),

who demonstrated that the acute responsiveness of the pulmonary

circulation to either hypoxia or hyperoxia was not impaired during 12–

13 days of progressive ascent from sea level to 5,300 m, suggesting

that the pulmonary circulation maintained its overall responsiveness

to changes in inspired O2. However, according to the findings by

Subedi et al. (2022), 14 days at 5,050 m were required almost as

a ‘threshold duration’ to ablate pulmonary vasculature reactivity to

supplemental O2 fully. This finding is supported by Maggiorini et al.

(2001),whodemonstrated that inmountaineerswith andwithout prior

susceptibility to high-altitude pulmonary oedema, hyperoxia failed

fully to reverse the increase in PAP observed after 48 h at 4,559 m.

Collectively, these findings indicate that vascular remodelling occurs

early after exposure to altitudes >4,500 m a.s.l. and that it is (almost)

complete after∼2weeks of continued residence at∼5,000m.

Unlike most forms of pulmonary hypertension, which are known

to be progressive and life-limiting, the vascular changes induced by

chronic hypoxia are reversible. However, the minimum length of stay

at low altitude that is required to allow the pulmonary vasculature

to become responsive to O2 again is not well defined. Despite

no amelioration in response to acute hyperoxia, Sime et al. (1971)

demonstrated normalization of PVR and PAP in Peruvian Andeans

after>2 years of residence at sea level. In addition, Anand et al. (1990)

observed full reversal of cardiomegaly and normalization of PVR and

PAP in Indian soldiers 12–16 weeks after descending from >5,800 to
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300 m. An interesting finding by Subedi et al. (2022) is how fast the

pulmonary vascular responsiveness to hyperoxia was (partly) restored

in the group of Sherpas who descended from>3,800m to low altitude.

After only 5–15 days (median 7 days!) at 1,300 m, pulmonary vascular

reactivityduring re-ascent toaltitudewas comparable to thatobserved

in the unacclimatized lowlanders. These findings are in agreementwith

Hilty et al. (2016), who reported that PAP after 4 weeks residence

at 3,454 m in lowlanders was fully reversible within 1 week after

return to sea level. However, by their own admission, Subedi et al.

(2022) failed to correct for alterations in haematocrit or to measure

changes in systemic/transpulmonary redox homoeostasis, which are

collectively known to impact haemostasis and associated vascular

reactivity (Bailey et al., 2010; Fall et al., 2018). Food for thought in

future studies!

From a clinical translational perspective, exposure to terrestrial

high altitude can provide unique insight into the mechanisms under-

lying the long-term impact of (chronic) hypoxia on the pulmonary

vasculature, including the molecular nuances that underlie structural

remodelling. The approach of investigating native lowlanders exposed

to high altitude and native highlanders offers the advantage that

a relatively homogeneous and well-characterized population

can be studied. It also allows better dissection of the effect of

environmental and genetic factors on (mal)adaption to high altitude.

However, although similarities might exist between the pathological

features of high altitude-induced pulmonary hypertension and

other forms of hypoxia-induced pulmonary hypertension (e.g., owing

to chronic obstructive pulmonary disease), the extent of overlap

in the pathological mechanisms remains unclear. Understanding

the integrated mechanisms and temporal kinetics underlying the

pulmonary vascular response to terrestrial high-altitude hypo-

xia has the potential to provide unique insight into (terrestrial)

treatment of pulmonary hypertension. Subedi et al. (2022) can

be congratulated for their study, which adds another piece to the

pulmonary puzzle that helps us to gain a better understanding of the

development and reversibility of high altitude-induced pulmonary

hypertension.
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