45 research outputs found

    Differences in IV alcohol-induced dopamine release in the ventral striatum of social drinkers and nontreatment-seeking alcoholics

    Get PDF
    Background Striatal dopamine (DA) has been implicated in alcohol use disorders, but it is still unclear whether or not alcohol can induce dopamine release in social drinkers. Furthermore, no data exist on dopamine responses to alcohol in dependent drinkers. We sought to characterize the DA responses to alcohol intoxication in moderately large samples of social drinkers (SD) and nontreatment-seeking alcoholics (NTS). Methods Twenty-four SD and twenty-one NTS received two [11C]raclopride (RAC) PET scans; one at rest, and one during an intravenous alcohol infusion, with a prescribed ascent to a target breath alcohol concentration (BrAC), at which it was then “clamped.” The alcohol clamp was started 5 min after scan start, with a linear increase in BrAC over 15 min to the target of 80 mg%, the legal threshold for intoxication. Target BrAC was maintained for 30 min. Voxel-wise binding potential (BPND) was estimated with MRTM2. Results IV EtOH induced significant increases in DA in the right ventral striatum in NTS, but not SD. No decreases in DA were observed in either group. Conclusions Alcohol intoxication results in distinct anatomic profiles of DA responses in SD and NTS, suggesting that in NTS, the striatal DA system may process effects of alcohol intoxication differently than in SD

    Super-resolution in brain positron emission tomography using a real-time motion capture system

    No full text
    Super-resolution (SR) is a methodology that seeks to improve image resolution by exploiting the increased spatial sampling information obtained from multiple acquisitions of the same target with accurately known sub-resolution shifts. This work aims to develop and evaluate an SR estimation framework for brain positron emission tomography (PET), taking advantage of a high-resolution infra-red tracking camera to measure shifts precisely and continuously. Moving phantoms and non-human primate (NHP) experiments were performed on a GE Discovery MI PET/CT scanner (GE Healthcare) using an NDI Polaris Vega (Northern Digital Inc), an external optical motion tracking device. To enable SR, a robust temporal and spatial calibration of the two devices was developed as well as a list-mode Ordered Subset Expectation Maximization PET reconstruction algorithm, incorporating the high-resolution tracking data from the Polaris Vega to correct motion for measured line of responses on an event-by-event basis. For both phantoms and NHP studies, the SR reconstruction method yielded PET images with visibly increased spatial resolution compared to standard static acquisitions, allowing improved visualization of small structures. Quantitative analysis in terms of SSIM, CNR and line profiles were conducted and validated our observations. The results demonstrate that SR can be achieved in brain PET by measuring target motion in real-time using a high-resolution infrared tracking camera

    ntPET: A New Application of PET Imaging for Characterizing the Kinetics of Endogenous Neurotransmitter Release

    No full text
    We present a new application of positron emission tomography (“ntPET” or “neurotransmitter PET”) designed to recover temporal patterns of neurotransmitter release from dynamic data. Our approach employs an enhanced tracer kinetic model that describes uptake of a labeled dopamine D2/D3 receptor ligand in the presence of a time-varying rise and fall in endogenous dopamine. Data must be acquired during both baseline and stimulus (transient dopamine release) conditions. Data from a reference region in both conditions are used as an input function, which alleviates the need for any arterial blood sampling. We use simulation studies to demonstrate the ability of the method to recover the temporal characteristics of an increase in dopamine concentration that might be expected following a drug treatment. The accuracy and precision of the method—as well as its potential for false-positive responses due to noise or changes in blood flow—were examined. Finally, we applied the ntPET method to small-animal imaging data in order to produce the first noninvasive assay of the time-varying release of dopamine in the rat striatum following alcohol
    corecore