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Abstract 

 

Background:  Striatal dopamine (DA) has been implicated in alcohol use disorders, but it is still 

unclear whether or not alcohol can induce dopamine release in social drinkers.  Furthermore, no 

data exist on dopamine responses to alcohol in dependent drinkers.  We sought to characterize 

the DA responses to alcohol intoxication in moderately large samples of social drinkers (SD) 

and nontreatment-seeking alcoholics (NTS).  Methods:  Twenty-four SD and twenty-one NTS 

received two [11C]raclopride (RAC) PET scans; one at rest, and one during an intravenous  

alcohol infusion, with a prescribed ascent to a target breath alcohol concentration (BrAC), at 

which it was then “clamped.”  The alcohol clamp was started 5 min after scan start, with a linear 

increase in BrAC over 15 min to the target of 80 mg%, the legal threshold for intoxication.  

Target BrAC was maintained for 30 min. Voxel-wise binding potential (BPND) was estimated with 

MRTM2.  Results.  IV EtOH induced significant increases in DA in the right ventral striatum in 

NTS, but not SD.   No decreases in DA were observed in either group.  Conclusions: Alcohol 

intoxication results in distinct anatomic profiles of DA responses in SD and NTS, suggesting that 

in NTS, the striatal DA system may process effects of alcohol intoxication differently than in SD.        
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1. Introduction 

 

There is strong evidence that the neurotransmitter dopamine (DA) plays multiple roles in 

alcoholism and other addictions (Berridge, 2007; Horvitz, 2000; O'Tousa and Grahame, 2014; 

Redgrave et al., 1999; Salamone et al., 2005).  Despite the wealth of preclinical literature, the 

functions of DA in human alcohol use disorders (AUD) remain poorly understood.  Thus, 

determining how striatal DA responds to alcohol continues to be pivotal for developing 

preventative and therapeutic approaches.   

 

Several groups have used positron emission tomography (PET) with the D2/D3 radioligand 

[11C]raclopride (RAC) to study the effects of alcohol ingestion on striatal DA.  Oral alcohol 

appears to cause modest increases in dopamine in the ventral striatum of healthy subjects 

(Boileau et al., 2003; Setiawan et al., 2014; Urban et al., 2010), with more notable effects in 

men (Urban et al., 2010) and in subjects with traits that may increase risk for AUD (Setiawan et 

al., 2014).  However, there are properties of oral alcohol intake that complicate interpretation of 

these studies.  First, the chemosensory (smell, taste) and somatosensory (oral sensations) 

characteristics of alcohol have powerful Pavlovian associations with intoxication.  In rodents, 

these conditioned cues are believed to mediate the acute increases in striatal DA observed in 

oral alcohol self-administration studies (Doyon et al., 2005), we have shown in humans that 

beer flavor provokes DA release in the ventral striatum (Oberlin et al., 2015).  Additionally, even 

with well-controlled dosing, oral ingestion of alcohol results in highly variable rates and 

concentrations of brain alcohol exposure because of inter-subject differences in stomach pH, 

volume of stomach contents, age, gender, and first-pass metabolism (Ramchandani et al., 

2009).  Different brain exposure timecourses, such as those induced by different peak breath 

alcohol concentrations (BrACs) and/or differing rates of BrAC increase, are likely to induce 

variation in the timing and magnitude of DA responses across subjects.  In turn, variability in DA 



release profiles can cause unwanted variance in the outcome measure of RAC binding potential 

(Endres and Carson, 1998; Yoder et al., 2004).   

 

Intravenous (IV) alcohol infusion avoids these potential confounds.  The physiologically-based 

pharmacokinetically (PBPK) model based IV alcohol clamp (O'Connor et al., 2000) precisely 

controls alcohol infusion rates using PBPK model parameters customized for each individual 

(Plawecki et al., 2007).  This permits control over the timing of alcohol delivery, minimizes 

experimental variation in the brain’s exposure to alcohol across subjects, and allows the 

maintenance (“clamping”) of a target breath alcohol concentration (BrAC).  Our initial RAC PET 

studies with the PBPK-IV alcohol clamp did not show alcohol-induced DA release at either 

60mg% or 80mg% (the latter being the legal definition of intoxication) (Yoder et al., 2007; Yoder 

et al., 2005).  However, these were relatively small samples, and there was variable timing of 

initiation of alcohol administration, leading to different brain alcohol exposures across subjects.   

Using similar IV clamping methods, Ramchandani et al. (Ramchandani et al., 2010) found that 

only social drinkers with the minor (and statistically rare) G allele of the functional µ-opioid 

receptor polymorphism (OPRM1 A118G) had measurable IV alcohol-induced DA release.  In 

contrast, there were no apparent effects in subjects homozygous for the major 118A allele.  

More recently, Aalto et al. reported striatal DA release from a bolus IV alcohol infusion in a small 

group of social drinkers (Aalto et al., 2015), although imaging during this non-PBPK paradigm 

may have captured both ascending and descending limbs of brain alcohol exposure.  Taken 

together, the PBPK-IV clamp data seem to suggest that IV alcohol may not produce a robust DA 

response in social drinkers; however, Type II error cannot be ruled out, given the sample sizes 

of all three PBPK-based infusion studies.   

 

Although evidence suggests that alcoholics have functional alteration of the DA system 

(Martinez et al., 2005; Narendran et al., 2014; Volkow et al., 2007), no research has used an 



alcohol challenge to induce DA release in dependent drinkers.  Prior work examined abstinent 

alcoholics during treatment and/or withdrawal, and utilized psychostimulants to probe DA 

function.   

 

Thus, to better understand how the DA system responds to alcohol both in subjects with and 

without alcohol use disorders, we studied nontreatment-seeking alcoholics (NTS, n = 21) and 

social drinkers (SD, n = 24) with a behaviorally relevant stimulus:  alcohol intoxication.  We 

hypothesized that alcohol challenge would result in DA release in both SD and NTS.       

 

   

  



2. Materials and Methods 

2.1. Subjects 

Procedures were approved by the Indiana University Institutional Review Board in accordance 

with the Belmont Report.  Written informed consent was obtained after confirmation that breath 

alcohol concentration (BrAC) was 0 mg% and study procedures were explained.  Twenty-four 

social drinkers (SD) and twenty-one nontreatment-seeking alcoholics (NTS) completed 

procedures with viable datasets.  Subsets of baseline RAC data have been published (Albrecht 

et al., 2013; Yoder et al., 2011a; Yoder et al., 2012).  General inclusion criteria were: men and 

women 21-55 years of age and the ability to read, understand, and complete all procedures in 

English.  Subjects underwent the Semi-Structured Assessment for the Genetics of Alcoholism 

(Bucholz et al., 1994) to confirm the presence or absence of alcohol use disorders (AUD).  NTS 

met DSM-IV criteria for alcohol dependence, had neither received treatment within the past 

year, nor were actively seeking treatment.  Exclusion criteria were:  history or presence of any 

psychiatric, neurological, or other medical disorder and/or current use of psychotropic or other 

medications that could influence study outcome, contraindications for safety during magnetic 

resonance imaging (MRI), positive urine pregnancy test, testing positive for illicit/illegal 

substance use via urine toxicology screen (results were evaluated within context of reported 

use, e.g., recent outpatient surgical procedures).   One NTS subject met criteria for marijuana 

abuse as determined by the Structured Clinical Diagnostic Interview for DSM-IV disorders I 

module for substance use disorders.  Nicotine dependence was permitted.  Inclusion of subjects 

who self-reported occasional marijuana use was determined on a case-by-case basis by the PI 

(KKY).       

 

Other characterization included:  medical history and demographic questionnaires, the 90-day 

Timeline Follow-Back for alcohol use (TLFB, (Sobell et al., 1986)), an adaptation of the TFLB for 

marijuana use,  Alcohol Dependency Scale (ADS; (Skinner and Allen, 1982)),  Fagerstrom 



Smoking Questionnaire (Pomerleau et al., 1994), Edinburgh Handedness Inventory (Oldfield, 

1971), and an internally-developed substance use questionnaire.   

 

2.2.  Intravenous Alcohol Infusion   

Individualized alcohol infusion profiles were precomputed via the PBPK model.  Input 

parameters included age, height, weight, and gender (O'Connor et al., 2000).  Two profiles were 

calculated, such that IV infusions of alcohol (6% vol/vol) would achieve target BrACs of 60 mg% 

(“morning infusion” ~4-6 hours before PET; see below) and 80 mg% (during the second PET 

scan).   

 

The PBPK-modeled IV alcohol procedure results in intoxication similar to that of oral alcohol 

ingestion (Ramchandani et al., 2004).  However, as the infusion itself and the rapid rise of BrAC 

can be novel, and given that novelty can induce DA release (De Leonibus et al., 2006; Rebec et 

al., 1997), we had subjects undergo a brief IV alcohol infusion prior to PET imaging.  Subjects (n 

= 42) received an IV infusion the morning of the PET study  (see 2.3).  A 60 mg% target for the 

morning infusion insured sufficient time (e.g., ~4-6 hours) for BrAC to return to 0 mg% prior to 

baseline PET.  Two SD and 1 NTS received the morning infusion on a separate day (i.e., PET 

was acquired at a later date).   

 

2.3.  Study Day Procedures 

Figure 1 presents a typical study-day timeline.  To prevent unwanted effects of craving or 

abstinence, subjects were not required to remain abstinent from alcohol, nicotine, or caffeine 

prior to the study.  Subjects were not permitted to smoke cigarettes or have caffeinated drinks 

during the study day.  Upon arrival, BrAC measurements were taken to ensure BrAC = 0 mg%.  

An IV catheter was placed in an antecubital vein.  Blood samples were acquired for OPRM1 

genotyping (see Supplementary Materials).  Subjects were given a full breakfast, and then 



underwent an IV alcohol infusion to a target of 60 mg% (see 2.2).  The first 21 subjects to 

participate received a “ramp” to target BrAC over 15 min, and were “clamped” for 30 min.  The 

remaining 24 subjects (14 SD, 10 NTS) received only the 15 min ramp to target of 60 mg% 

(elimination of the clamp permitted scheduling flexibility, as subjects would return to 0 mg% 

more quickly before imaging).  Subjects subsequently received a structural MRI scan, lunch, 

and two RAC scans in the afternoon (see below). After completing the alcohol RAC PET scan, 

subjects were escorted back to the CRC where they remained until BrAC was <20mg%.    

 

To avoid confounds of nicotine withdrawal and/or cigarette craving on D2/D3 receptor availability 

(Brody et al., 2006; Volkow et al., 2006; Wong et al., 2006), transdermal nicotine patches (TNP) 

were placed on cigarette smokers (SD, n = 12; NTS, n = 18) shortly after arrival; dose was 

based on self-report of cigarettes smoked/day.  TNPs effectively minimize craving in cigarette 

smokers during studies of similar length (Yoder et al., 2012).  Test-retest variability of RAC is 

stable in subjects wearing TNP (Yoder et al., 2011a).   

 

Subjective ratings were acquired every 5- 10 min during the morning infusion and both RAC 

scans.  Questions were presented on a computer monitor; subjects responded along a visual 

analog scale (VAS) with a mouse.  Items included four questions “How high (intoxicated, 

stimulated, sedated) do you feel right now?” that were anchored by 0 (“not at all”) and 100 (“the 

most ever”).  Area under the curve (AUC) was calculated with the trapezoidal rule for VAS data 

collected during PET.    

 

2.4.  Imaging 

An MP-RAGE structural MRI was acquired in a Siemens 3T Magnetom Trio-Tim (Siemens, 

Erlangen, Germany).  

 



Subjects received two [11C]raclopride (RAC) scans in the afternoon:  a resting baseline 

acquisition, followed ~2 hours later by a scan with an IV alcohol infusion (EtOH; Figure 1).  

BrAC in all subjects was 0 mg% prior to baseline scanning.  RAC synthesis was completed as 

described previously (Fei et al., 2004).  RAC PET scans were acquired in a Siemens EXACT 

HR+ (3D mode; septa retracted). A 10-min transmission scan was obtained for attenuation 

correction.   PET scans were initiated with the IV infusion of 514 ± 56 MBq RAC over 1.5 min, 

with dynamic acquisition for 50 min.  IV EtOH began 5 min after the second scan start.  BrAC 

was raised to the 80mg% target over 15 min, and was maintained there for 30 min.   

 

PET scans were acquired on the same day to minimize within-subject variance and subject 

attrition; therefore, a fixed scan order was needed to preclude residual effects of alcohol on a 

subsequent baseline scan.  This invariant order is similar to the bolus-infusion method in PET 

studies, in which baseline is established prior to tracer displacement with a drug.  A resting 

baseline was chosen over a placebo infusion, as placebo conditions can also increase striatal 

dopamine (de la Fuente-Fernandez et al., 2001; Kaasinen et al., 2004), which could result in 

underestimation of any bona fide increase in DA levels, or overestimation of decreases in DA 

(Yoder et al., 2011b).  Similarly, to minimize effects of uncertainty on baseline RAC (Yoder et 

al., 2008), subjects were made explicitly aware of what would happen during each scan.  With 

this design, subjects are thus closer to a behavioral state that would exist during naturalistic 

drinking.  

 

2.5.  Image Processing 

Image processing is similar to that described previously (Yoder et al., 2012).  Briefly, using 

SPM5 (http://www.fil.ion.ucl.ac.uk/spm/), dynamic PET data were co-registered to the MP-

RAGE and spatially normalized to Montreal Neurological Institute (MNI) space via the 



transformation matrix obtained for the structural MRI volume.  Final voxel size was isotropic 2 

mm/side. 

 

Cerebellar regions of interest (ROIs) were created for each subject, and time-activity curves for 

this ROI were generated with the MarsBaR toolbox (http://marsbar.sourceforge.net/).    

 

2.6.  Parametric Image Generation and Analysis 

D2/D3 receptor availability was indexed with BPND, the binding potential of [11C]raclopride (Innis 

et al., 2007)). Voxel-wise BPND estimates were obtained with the multilinear reference tissue 

method with a common reference region efflux rate to facilitate robust performance on noisy 

voxel data (Ichise et al., 2003).  Parametric BPND images were smoothed with an isotropic 4mm 

Full Width at Half Maximum Gaussian kernel.  In three subjects, there was uncorrectable head 

motion near the end of scanning, so either 30 min (2 SD) or 45 min (1 NTS) of data were utilized 

to generate the BPND images for both scan conditions. This does not result in major decrements 

in BPND values, and does not corrupt the validity of the within-subject analysis approach (Yoder 

et al., 2009).  

 

Smoothed parametric images were entered into a 2 scan (rest, IV alcohol) x group (SD, NTS) 

full factorial model in SPM5.  Model contrasts tested for main effects of alcohol (p < 0.005, 

uncorrected, cluster extent threshold k = 20).  Within the SPM models, the search area was 

restricted to a bilateral binary striatal mask created by averaging a subset of SD and NTS 

resting scan parametric images, including all voxels with BPND values > 0.5.  Functional clusters 

from the main effect contrast were defined as ROIs; average BPND from both scans were 

extracted using MarsBaR.  Change in RAC availability was calculated as [∆BPND = ((BPND-rest-

BPND-alcohol)/BPND-rest)*100%]. One-sample t-tests determined whether extracted ∆BPND values 

were different from zero.    



  

2.7.  Other Statistical Analyses  

Chi-squared and independent t-tests were utilized for categorical and continuous variables, 

respectively.  One-way ANOVA tested for differences in RAC parameters, with Group, Scan, 

and Group*Scan as factors.  Repeated-measures, two-way ANOVA was used to determine 

effects of Time, Group, and Time*Group on subjective ratings.  Correlations were tested with 

Pearson’s correlation.  Significance was set at p < 0.05 (two-tailed).  Data are mean ± s.d. 

unless otherwise specified.   

 

3.  Results 

3.1.  Subjects  

Subject characteristics are presented in Table 1.    

 

3.2.  [11C]Raclopride Parameters 

Radioactivity and mass dose injected are presented in Table 2.  There were no significant 

effects of Group, Scan, or Group*Scan on either parameter.   

 

3.3.  Breath Alcohol Concentration 

Table 3 presents the post-infusion BrAC measurements for both the “morning infusion” and the 

RAC scan infusion.  There were no significant group differences for either measurement.   

 

3.4.  Subjective Responses to IV Alcohol during RAC PET 

Figure 2 illustrates the time course of subjective ratings of “High” for SD and NTS during the 

alcohol RAC scan.  The time course of the subjective perceptions followed the timing of the IV 

alcohol infusion (see also 2.4).  There was a significant effect of Time, but no effect of Group or 

Time*Group.  Least significant difference post-hoc testing revealed that ratings at t = 5, 10, 15, 



and 20 minutes were different from all other time points (p < 0.02).  Ratings at t = 30, 40, and 50 

min were not different from one another.  Effects were similar for “Intoxicated”, “Sedated”, and 

“Stimulated,” (data not shown); these four ratings are highly intercorrelated (data not shown).   

 

3.5.  Dopamine Responses to IV Alcohol  

Figure 3 shows the main effects of alcohol ([BPND- BL > BPND-EtOH]; indicative of increases in 

dopamine; p < 0.005, uncorrected; k = 20).  Across all subjects, alcohol increased DA in the 

right ventral striatum (VST, cluster size k = 48; peak voxel at [10 6 -10], Z = 3.56, punc < 0.0001) 

and in the right piriform cortex (cluster size k = 63; peak voxel [30 6 -16]; Z = 3.87, punc < 

0.0001).  The extracted ∆BPND values for each cluster are listed in Table 4.   

 

In the right VST cluster, ∆BPND was significantly different from zero in NTS, but not SD.  SD had 

a significant increase in DA in a region approximating the right piriform area.     

 

Alcohol did not result in any decreases in striatal DA in either SD or NTS.   

 

The results remained significant without the NTS subject with comorbid marijuana abuse (data 

not shown).  This subject’s ∆BPND value from the VST cluster was within 1 standard deviation of 

the group mean; ∆BPND from the piriform region was within 2 s.d. of the group mean.   

 

3.6.  DA Responses and Subjective Ratings 

Extracted BPND data from the right VST and piriform area clusters were assessed for 

relationships with subjective rating AUC. There were no correlations between BPND in either 

region and AUC for subjective ratings of “High”, “Intoxicated”, “Sedated”, and “Stimulated.”   

When groups were tested separately, there were no correlations between subjective ratings and 

BPND in NTS.  In SD, there were modest correlations between BPND and “High” and “Intoxicated” 



(r = 0.36 and 0.31, respectively, p < 0.05).  However, visual analysis of the plot revealed that the 

significance was likely driven by outliers (data not shown).   

 

3.7.  OPRM1 A118G Polymorphism 

As the OPRM1 A118G polymorphism may modulate the DA response to IV alcohol 

(Ramchandani et al., 2010), we verified this genotype in our subjects (Table 1; for methods, see 

Supplementary Material). Genotyping data were unavailable for 2 SD and 2 NTS.  The low 

sample frequency of the G allele precluded analyses by genotype.     

 

  



4.  Discussion 

 

This study examined the effect of alcohol intoxication on striatal DA responses in moderately 

large samples of SD and NTS.  IV alcohol infusion with PBPK modeling (O'Connor et al., 2000; 

Ramchandani et al., 1999) was employed to precisely control the timing of brain alcohol 

exposure across all subjects, and to avoid the confound of conditioned chemosensory cues on 

VST DA (Doyon et al., 2003; Oberlin et al., 2013).  The primary finding was that SD and NTS 

subjects exhibited different magnitudes of VST DA release to an IV alcohol infusion targeted to 

a BrAC of 80mg%.  Specifically, NTS subjects had statistically significant increases in DA in 

right ventral striatum, whereas SD did not.  No decreases in DA were observed in either group.  

To our knowledge, this is the first study to report the effects of alcohol intoxication on the striatal 

DA system in dependent, current drinkers.   

 

Even with a large sample, and uniformity in timing and character of brain alcohol exposure, we 

did not find that intravenously administered alcohol induced significant changes in VST DA in 

social drinkers.  The only other published PBPK-modeled IV alcohol infusion protocol to 

examine DA release with PET was Ramchandani et al. (2010); our social-drinking sample most 

closely corresponds to their OPRM1 118AA group.  There was no apparent effect on IV alcohol 

on VST DA in the Ramchandani et al. 118AA sample, which is consistent with data in the 

present study.  Aalto et al. (2015) reported alcohol-induced DA release in 9 social drinkers using 

a bolus-infusion RAC PET protocol.  The bolus-infusion approach, as in our design, measures 

baseline and challenge conditions successively within the same session, and thus avoids 

between-day variance.  However, some other features may not make their study a good 

comparison to the present work.  The ethanol concentration they used was above 6.0% v/v 

(7.6%), which, in our experience, can cause significant endothelial irritation.  Additionally, their 

range of ethanol exposure was quite large (90-160 mg%), and the non-PBPK infusion is likely to 



have included both the rising and descending limbs of the BrAC curve.  Finally, subjects in the 

Aalto study were naïve to the alcohol infusion experience, increasing the likelihood of novelty 

effects on DA release (De Leonibus et al., 2006; Rebec et al., 1997).   

 

The observed increase in DA levels in the ventral striatum of NTS with IV alcohol infusion may 

seem intuitively obvious, given the VST’s oft-cited role in “reward”.  However, we did not 

observe any IV alcohol-induced DA release in the SD subjects, who presumably drink alcohol 

on occasion for its reinforcing properties.  This discrepant result raises two interesting points.  

First, it suggests that the VST may be sensitized in alcoholics.  Given that the VST codes for 

stimulus valence (Bischoff-Grethe et al., 2009; Mattfeld et al., 2011; Seymour et al., 2007), an 

attractive interpretation is that IV alcohol intoxication has higher reinforcement value in NTS 

than in SD.   Second, several studies have found that abstinent/detoxified alcoholics have lower 

psychostimulant-induced increases in DA compared to healthy controls (Martinez et al., 2005; 

Narendran et al., 2014; Volkow et al., 2007), which is typically taken as evidence for a 

hypofunctional DA system in chronic alcoholism.  However, this phenomenon may be unique to 

stimulants such as methylphenidate and amphetamine, which have direct and powerful effects 

on dopamine concentration at the levels of the nerve terminal and synapse.  Indeed, 

Spreckelmeyer et al. (Spreckelmeyer et al., 2011) found that opioids, which elicit a very modest 

effect on DA release, did not induce measurable differences in opioid-induced DA release 

between detoxified alcoholics and controls. This, coupled with our present data, indicate 

psychostimulants may not be an appropriate proxy for characterizing the nature of dopaminergic 

function in alcoholism.  The contextually relevant stimulus of alcohol intoxication may constitute 

a better tool for understanding how the DA system functions in the development and 

maintenance of AUD.            

 



It is not clear how to interpret the IV alcohol-induced increase in DA in the piriform cortex in SD.   

The signal-to-noise properties of RAC make it unsuitable for hypothesis testing in regions with 

modest levels of D2/D3 receptors (i.e., outside the striatum).  Although this region was 

apparently included in our mask (2.6), the result was unexpected.  Of note, there was large 

variance in BPND in this region (Table 4).   

 

Although this is a relatively large PET study, it still may be underpowered in SD because of the 

presumably smaller effect size.  Thus, the data could contain type II errors in the VST of the SD 

sample.  However, it is worth noting the results are consistent with our prior work (Yoder et al., 

2005) and results from Ramchandani et al. (2010) in SD with the most common OPRM1 

genotype.  Another limitation is that we cannot distinguish between a predisposing difference in 

VST DA function and long-term effects of chronic drinking, a problem common to all 

neuroimaging studies of addiction.  The prospective longitudinal studies required to answer this 

question are not possible, as research radiotracers cannot be administered to minors.  Finally, 

this study did not employ a placebo condition as a baseline comparator.  As noted (see 2.4), 

placebos can induce DA release, and the uncertainty of subject expectations that may 

accompany placebo designs can confound baseline RAC BP.  We thus opted to implement a 

resting baseline and expected alcohol paradigm, the latter of which more closely models 

expectations during naturalistic drinking.   

 

5. Conclusions 

We used a PBPK-modeled IV alcohol clamp technique to examine the effects of alcohol 

intoxication on striatal DA release in SD and NTS.  We observed increases in right VST DA in 

NTS, but not SD.  To our knowledge, this is the first report of the effects of alcohol on DA in 

currently drinking alcohol-dependent subjects.  The results suggest that the DA system may 

process alcohol intoxication differently in NTS than in SD.  The data may reflect relative group 



differences in perceived valence, reinforcement, or expectancies related to alcohol intoxication, 

hypotheses that require further investigation.     
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Figure Legends 

 

Figure 1.  Typical study day timeline.  RAC, [11C]raclopride PET scan; ICRC; Indiana Clinical 

Research Center.    

 

Figure 2.  Subjective ratings for “high” during the alcohol RAC PET scan.  Left y-axis, visual 

analog ratings for “high” for SD (filled circles, black line) and NTS (open circles, dotted line). 

Data are mean ± s.d.  Data were not available for one NTS subject.  Alcohol infusion was 

started 5 minutes after the RAC injection (t = 0; gray arrow).  The BrAC target for the 30 minute 

IV alcohol clamp (gray bar) was 80 mg%.    See text for details.   

 

Figure 3.  Voxel-wise results for main effect of alcohol across all subjects, indicating where IV 

ethanol increased dopamine relative to the resting baseline [BPND-rest > BPND-alcohol].  See text for 

details.  Display height, p < 0.005, uncorrected; cluster extent threshold k = 20 voxels. Color bar 

indicates the t-statistic.  See text for details.  The magnitudes of ∆BPND from each cluster, by 

group, are presented in Table 4.    

 

 

 

 

 

 

 

 

 

  



Table 1.  Subject demographics and characteristics.   

 SD NTS p 

N 24 21 n.s. 

Age 33.9 ± 8.5 36.6  ± 8.5 n.s. 

gender 6F 3F n.s. 

race 8AA 10AA n.s. 

ethnicity 1HL 0HL N/A 

education (years) 14.1 ± 2.3 12.9 ± 1.5 < 0.05 

handedness 24R 20R, 1A N/A 

OPRM1 A118G* 
118AA: 16 
118AG: 5 
118GG: 1 

118AA:  17 
118AG: 2 
118GG:  0 

 

drinks/dd 2.9 ± 1.3 9.1 ± 3.0 < 1x10-10 

drinks/week 4.4 ± 3.1 40.6 ± 20.3 < 1x10-10 

ADS 4.0 ± 2.9 12.9 ± 6.2 < 1x10-06 

cigarette smokers 12 18 < 0.02 

Fagerstrom (smokers only) 3.85 ± 1.46 3.78 ± 2.18 n.s. 

 

AA = African American, HL = Hispanic Latino, R = Right handed, A = Ambidextrous.   

*Genotyping data available for 22 SD and 19 NTS. 

 



Table 2.  [11C]raclopride injection parameters by group and scan.  

 

 SD NTS 

MBq   

Rest 529 ± 55.5 503 ± 59.2 

EtOH 522 ± 51.8 507 ± 59.2 

   

nmol/kg   

Rest 0.13 ± 0.06 0.15 ± 0.07 

EtOH 0.12 ± 0.05 0.13 ± 0.05 

 

 

 

 

  



Table 3.  Post-infusion breath alcohol concentrations (BrAC).   

 SD NTS p 

Morning infusion 
(target:  60 mg%) 

59.9 ± 10.1 56.0 ± 9.0 n.s. 

PET infusion (target:  
80 mg%) 

72.7 ± 9.7 69.9 ± 9.8 n.s. 

 

 

  



Table 4.  ∆BPND values for the clusters extracted from the main effects of alcohol contrast.   

 

 SD  NTS 

 BPND-rest BPND-alcohol ∆BPND  BPND-rest BPND-alcohol ∆BPND 

Right Ventral 
Striatum 

1.42 ± 0.17 1.34 ± 0.21 5.2 ± 13.0  1.47 ±  0.20 1.33 ± 0.25 9.0 ± 13.6† 

Right Piriform 
Cortex 

0.73 ± 0.21 0.62 ± 0.22 13.9 ± 19.2‡  0.74 ±  0.31 0.65 ± 0.17 4.5 ± 30.6 

 

†significantly different from zero, p = 0.006 

‡significantly different from zero, p = 0.002 

 

 

 

 
 



Supplementary Materials 

Genotyping for OPRM A118G polymorphism  

Genotyping for the OPRM A118G polymorphism was conducted in order to determine whether 

RAC PET data could be analyzed with respect to presence or absence of the 118G allele.  

Blood samples were analyzed at the NIAAA-funded Indiana University Alcohol Research 

Center.  DNA was isolated using the “HotSHOT” method, which is a fast and cost-effective way 

to isolate PCR quality genomic DNA (Truett et al., 2000). In this method, TaqMan probes are 

used for allelic discrimination (Applied BioSystems, Foster City, CA). The allelic discrimination 

assay is a multiplexed (one primer pair/ two probes per reaction), end-point (data is collected at 

the end of the PCR process) assay. Each assay mix contains two different TaqMan probes, 

labeled with VIC or FAM fluorescent reporter dye, which bind preferentially to one of the alleles. 

The genotype of each sample is determined by the fluorescence levels of the reporter dyes and 

is clustered on a graph with other samples of the same genotype. Each reaction contains 5 ul of 

2X TaqMan Universal PCR Mastermix, No AmpErase UNG, 3.75 ul of water, 0.25ul of 40X 

Assay Mix, and 1ul of DNA sample. Eight or eleven controls are included on each 96-well plate: 

2 no template controls, 2 or 3 heterozygous samples and 2 or 3 of each of the homozygous 

samples. Since genotyping is done by endpoint reading, the thermocycling is carried out in MJ 

Research PTC-200 thermocyclers. The PCR products are then analyzed in an ABI PRISM® 

7300 Sequence Detection System (SDS) instrument. SDS Software 1.3.1 converts the raw data 

to pure dye components and plots the results of the allelic discrimination on a scatter plot of 

Allele X versus Allele Y; each genotype appears on the graph as a cluster of points. 

 

 
 
Truett, G.E., Heeger, P., Mynatt, R.L., Truett, A.A., Walker, J.A., Warman, M.L., 2000. 
Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris 
(HotSHOT). BioTechniques 29, 52, 54. 
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