117 research outputs found

    Exact Price of Anarchy for Weighted Congestion Games with Two Players

    Get PDF
    This paper gives a complete analysis of worst-case equilibria for various versions of weighted congestion games with two players and affine cost functions. The results are exact price of anarchy bounds which are parametric in the weights of the two players, and establish exactly how the primitives of the game enter into the quality of equilibria. Interestingly, some of the worst-cases are attained when the players' weights only differ slightly. Our findings also show that sequential play improves the price of anarchy in all cases, however, this effect vanishes with an increasing difference in the players' weights. Methodologically, we obtain exact price of anarchy bounds by a duality based proof mechanism, based on a compact linear programming formulation that computes worst-case instances. This mechanism yields duality-based optimality certificates which can eventually be turned into purely algebraic proofs.Comment: 17 pages, 9 figures, 4 table

    Mobile Health App Database - A Repository for Quality Ratings of mHealth Apps

    Get PDF
    The utilization of mobile technology in the field of medicine and healthcare has become a decisive aspect. The entire field is denoted as mobile health (mHealth). For mHealth, the development and use of mobile applications are crucial. The purposes and goals of mHealth apps, in turn, are manifold. As a consequence, a plethora of mHealth apps can be found in the app stores. Interestingly, for patients, users, and health care providers that consider to use mHealth apps one aspect has been less pursued so far: Systematic and standardized ways that help about the quality of an app or its medical evidence are mainly missing. The Mobile App Rating Scale (MARS) is a standardized instrument that aims at the systematic and comparable evaluation of the quality of mobile health apps as well as categorizing their goals and functions. It comprises 23 items, which are utilized to calculate a rating scale. Having MARS in mind, a database was developed that is called Mobile Health App Database (MHAD). The latter offers technical features to systematically utilize the MARS for researchers as well as clinicians and end-users that (i) want to evaluate apps as well as (ii) want an interactive and easy-to-use web interface that shows the results of the rating procedure. MHAD comprises a rating platform that supports the conduction of MARS ratings and their release process. With the information platform, a web application was developed that prepares the data stored in the rating platform for being freely viewed and studied by users, patients, and health care providers. The goal of MHAD constitutes to be an open science repository that encourages researchers to release their MARS ratings to a broader audience. Such repositories become more and more important in many fields, especially in the field of mHealth

    A Structured Tumor-Immune Microenvironment in Triple Negative Breast Cancer Revealed by Multiplexed Ion Beam Imaging

    Get PDF
    The immune system is critical in modulating cancer progression, but knowledge of immune composition, phenotype, and interactions with tumor is limited. We used multiplexed ion beam imaging by time-of-flight (MIBI-TOF) to simultaneously quantify in situ expression of 36 proteins covering identity, function, and immune regulation at sub-cellular resolution in 41 triple-negative breast cancer patients. Multi-step processing, including deep-learning-based segmentation, revealed variability in the composition of tumor-immune populations across individuals, reconciled by overall immune infiltration and enriched co-occurrence of immune subpopulations and checkpoint expression. Spatial enrichment analysis showed immune mixed and compartmentalized tumors, coinciding with expression of PD1, PD-L1, and IDO in a cell-type- and location-specific manner. Ordered immune structures along the tumor-immune border were associated with compartmentalization and linked to survival. These data demonstrate organization in the tumor-immune microenvironment that is structured in cellular composition, spatial arrangement, and regulatory-protein expression and provide a framework to apply multiplexed imaging to immune oncology

    A Structured Tumor-Immune Microenvironment in Triple Negative Breast Cancer Revealed by Multiplexed Ion Beam Imaging

    Get PDF
    The immune system is critical in modulating cancer progression, but knowledge of immune composition, phenotype, and interactions with tumor is limited. We used multiplexed ion beam imaging by time-of-flight (MIBI-TOF) to simultaneously quantify in situ expression of 36 proteins covering identity, function, and immune regulation at sub-cellular resolution in 41 triple-negative breast cancer patients. Multi-step processing, including deep-learning-based segmentation, revealed variability in the composition of tumor-immune populations across individuals, reconciled by overall immune infiltration and enriched co-occurrence of immune subpopulations and checkpoint expression. Spatial enrichment analysis showed immune mixed and compartmentalized tumors, coinciding with expression of PD1, PD-L1, and IDO in a cell-type- and location-specific manner. Ordered immune structures along the tumor-immune border were associated with compartmentalization and linked to survival. These data demonstrate organization in the tumor-immune microenvironment that is structured in cellular composition, spatial arrangement, and regulatory-protein expression and provide a framework to apply multiplexed imaging to immune oncology

    Multiplexed imaging of human tuberculosis granulomas uncovers immunoregulatory features conserved across tissue and blood

    Get PDF
    Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis that is distinctly characterized by granuloma formation within infected tissues. Granulomas are dynamic and organized immune cell aggregates that limit dissemination, but can also hinder bacterial clearance. Consequently, outcome in TB is influenced by how granuloma structure and composition shift the balance between these two functions. To date, our understanding of what factors drive granuloma function in humans is limited. With this in mind, we used Multiplexed Ion Beam Imaging by Time-of-Flight (MIBI-TOF) to profile 37 proteins in tissues from thirteen patients with active TB disease from the U.S. and South Africa. With this dataset, we constructed a comprehensive tissue atlas where the lineage, functional state, and spatial distribution of 19 unique cell subsets were mapped onto eight phenotypically-distinct granuloma microenvironments. This work revealed an immunosuppressed microenvironment specific to TB granulomas with spatially coordinated co-expression of IDO1 and PD-L1 by myeloid cells and proliferating regulatory T cells. Interestingly, this microenvironment lacked markers consistent with T-cell activation, supporting a myeloid-mediated mechanism of immune suppression. We observed similar trends in gene expression of immunoregulatory proteins in a confirmatory transcriptomic analysis of peripheral blood collected from over 1500 individuals with latent or active TB infection and healthy controls across 29 cohorts spanning 14 countries. Notably, PD-L1 gene expression was found to correlate with TB progression and treatment response, supporting its potential use as a blood-based biomarker. Taken together, this study serves as a framework for leveraging independent cohorts and complementary methodologies to understand how local and systemic immune responses are linked in human health and disease

    Multiplexed imaging of human tuberculosis granulomas uncovers immunoregulatory features conserved across tissue and blood

    Get PDF
    Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis that is distinctly characterized by granuloma formation within infected tissues. Granulomas are dynamic and organized immune cell aggregates that limit dissemination, but can also hinder bacterial clearance. Consequently, outcome in TB is influenced by how granuloma structure and composition shift the balance between these two functions. To date, our understanding of what factors drive granuloma function in humans is limited. With this in mind, we used Multiplexed Ion Beam Imaging by Time-of-Flight (MIBI-TOF) to profile 37 proteins in tissues from thirteen patients with active TB disease from the U.S. and South Africa. With this dataset, we constructed a comprehensive tissue atlas where the lineage, functional state, and spatial distribution of 19 unique cell subsets were mapped onto eight phenotypically-distinct granuloma microenvironments. This work revealed an immunosuppressed microenvironment specific to TB granulomas with spatially coordinated co-expression of IDO1 and PD-L1 by myeloid cells and proliferating regulatory T cells. Interestingly, this microenvironment lacked markers consistent with T-cell activation, supporting a myeloid-mediated mechanism of immune suppression. We observed similar trends in gene expression of immunoregulatory proteins in a confirmatory transcriptomic analysis of peripheral blood collected from over 1500 individuals with latent or active TB infection and healthy controls across 29 cohorts spanning 14 countries. Notably, PD-L1 gene expression was found to correlate with TB progression and treatment response, supporting its potential use as a blood-based biomarker. Taken together, this study serves as a framework for leveraging independent cohorts and complementary methodologies to understand how local and systemic immune responses are linked in human health and disease

    The immunoregulatory landscape of human tuberculosis granulomas.

    Get PDF
    Tuberculosis (TB) in humans is characterized by formation of immune-rich granulomas in infected tissues, the architecture and composition of which are thought to affect disease outcome. However, our understanding of the spatial relationships that control human granulomas is limited. Here, we used multiplexed ion beam imaging by time of flight (MIBI-TOF) to image 37 proteins in tissues from patients with active TB. We constructed a comprehensive atlas that maps 19 cell subsets across 8 spatial microenvironments. This atlas shows an IFN-γ-depleted microenvironment enriched for TGF-β, regulatory T cells and IDO
    corecore