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Abstract. This paper gives a complete analysis of worst-case equilibria
for various versions of weighted congestion games with two players and
affine cost functions. The results are exact price of anarchy bounds, which
are parametric in the weights of the two players, and establish exactly
how the attributes of the game enter into the quality of equilibria. Inter-
estingly, some of the worst-cases are attained when the players’ weights
only differ slightly. Our findings also show that sequential play improves
the price of anarchy in all cases, however, this effect vanishes with an
increasing difference in the players’ weights. Methodologically, we obtain
exact price of anarchy bounds by a duality-based proof mechanism, based
on a compact linear programming formulation that computes worst-case
instances. This mechanism yields duality-based optimality certificates,
which can eventually be turned into purely algebraic proofs.

1 Introduction

This paper studies the quality of equilibria for games with two players that
compete for a set of resources, when the cost (or congestion) on each resource is
given by an affine function that depends on the total load of that resource. The
games that we consider fall into a class of games known as weighted Rosenthal
congestion games [20,28]. As we address several variants of such games, before
discussing our actual contribution, let us first define these different settings.

Problem Definition. There are two players denoted i = 1, 2, and the possible
actions of player i are given by admissible subsets Ai ⊆ 2R of a finite set of
resources R. This includes so-called atomic network routing games, where the
resources are edges E in a directed graph G = (V,E), and each player wants to
establish a path between source and target vertices si, ti ∈ V (G), so that the
admissible actions of player i are the edge sets of the directed (si, ti)-paths. A
congestion game is called symmetric if A1 = A2. For network routing games,
that means that all players have the same source and the same target.

We address two different game theoretic settings. In simultaneous games,
both players choose their actions simultaneously, and the admissible actions Ai
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of a player i are exactly the player’s strategies in the corresponding strategic
form bimatrix game. We also consider sequential extensive form games where
the players choose actions after each other, w.l.o.g. first player 1, then player 2.
Here, the first player’s strategies are the actions A1, and a strategy for the second
player consists of one action from A2 for each possible strategy (= action) of the
first player. In both cases, the game results in an outcome where both players
have chosen one action, denoted action profile A = (A1, A2), where Ai ∈ Ai.

The players have to pay for each resource r ∈ R that they choose, and the
cost of a resource r ∈ R depends on its load, which again depends on the set
of players using it. In the unweighted version of the problem, the load xr of a
resource r equals the number of players using it, and the game is a potential
game [22,28]. In the weighted version of the problem, each player i has a player-
specific weight wi, and the load xr of a resource r ∈ R equals the total weight of
the players that have chosen it. So if A = (A1, A2) is an action profile, the load
of a resource r ∈ R equals xr(A) =

∑
i|r∈Ai

wi. When w1 = w2, this corresponds
to the unweighted version (possibly after scaling).

Throughout the paper, we assume that the cost function for each resource r
is an affine function in its load xr, with non-negative coefficients. That is, for
each resource r ∈ R, there are non-negative reals αr ≥ 0 and βr ≥ 0, and with
xr being the total load of resource r, the cost of resource r equals αr + βrxr.

For weighted congestion games, two different cost functions appear in the
literature, under different names. We here follow the nomenclature as used in [15].
The first class of cost functions is uniform costs [10,11,15,16,21,26], where the
cost of a resource can be thought of as a delay or latency (as, e.g., in traffic),
which is the same for all players choosing that resource, so that each player pays
the costs for the loads of all chosen resources. That means that an action profile
A = (A1, A2) yields as cost for player i

Cuni
i (A) :=

∑

r∈Ai

(αr + βr

∑

j: r∈Aj

wj) . (1)

The second class of cost functions is proportional costs [13,15], where the cost
of a resource can be thought of as as per-unit cost, and each player pays pro-
portionally to the load that the player imposes on a resource. Then, an action
profile A = (A1, A2) yields as cost for player i

Cprop
i (A) := wi

∑

r∈Ai

(αr + βr

∑

j: r∈Aj

wj). (2)

In the following we also use Ci( · ) to denote either of the two cost functions.
Note that the cost functions agree in the (unweighted) case when w1 = w2 = 1.

Equilibria. For simultaneous games, a strategy profile (Aequi
1 , Aequi

2 ) is a (pure)
Nash equilibrium [23,24] if none of the players can improve unilaterally, i.e.,

C1(A
equi
1 , Aequi

2 ) ≤ C1(A1, A
equi
2 ) ∀A1 ∈ A1, (3a)

C2(A
equi
1 , Aequi

2 ) ≤ C2(A
equi
1 , A2) ∀A2 ∈ A2. (3b)
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Since we assume that the cost functions per resource are affine, the existence of
pure Nash equilibria is guaranteed [14].

For sequential games, let us assume w.l.o.g. that the players choose their
actions in the order 1, and then 2. The first player then has strategy set A1. A
strategy of the second player can be written as a tuple of length |A1|, specifying
the response of player 2 to any possible strategy of player 1.

Since we consider full information games, in equilibrium both players can
choose a (pure) strategy that minimizes the player’s cost. For player 2 that
means, if A1 is chosen by player 1, to choose any Aequi

2 so that

C2(A1, A
equi
2 ) ≤ C2(A1, A2) for all A2 ∈ A2.

If we denote by Aequi
2 (A1), A1 ∈ A1, such an equilibrium strategy for player 2,

player 1 chooses any strategy Aequi
1 so as to minimize her cost, that is,

C1(A
equi
1 , Aequi

2 (Aequi
1 )) ≤ C1(A1, A

equi
2 (A1)) for all A1 ∈ A1.

All pairs of strategies (Aequi
1 , Aequi

2 (Aequi
1 )) that fulfill both conditions are pre-

cisely the (pure) subgame-perfect equilibria [30] for the sequential, extensive
form game. For the full information games considered here, (pure) subgame per-
fect strategies exist and can easily be computed by the “procedure” as sketched
above, known as backward induction [27]. A subgame perfect equilibrium yields
as outcome an action profile (Aequi

1 , Aequi
2 ). It is well known that, even for net-

work routing games, subgame perfect outcomes need not be a Nash equilibrium
in the corresponding simultaneous game [8], which is one of the difficulties in
analyzing subgame-perfect equilibria.

Price of Anarchy. It is well known that if players choose their actions A =
(A1, A2) selfishly while only considering their own cost functions Ci(A), there
may be outcomes that are stable with respect to either Nash or subgame-perfect
equilibrium, but that solution need not minimize the cost of both players together
C(A) := C1(A) + C2(A). The price of anarchy [18] measures these negative
effects of selfish behaviour. It is defined as the maximum cost of an equilibrium
outcome, relative to the cost of the so-called social optimum, which is an action
profile that minimizes total cost. Formally, for a given instance I of a weighted
congestion game, if we define Aequi(I) as the set of action profiles that may
result as outcome from some equilibrium, and Aopt(I) as a social optimum, so
any profile that minimizes total costs C( · ), the price of anarchy is

PoA(I) := max
A∈Aequi(I)

C(A)
C(Aopt(I))

.

For sequential games, the maximum is also taken over all possible orders of the
players. The price of anarchy for a class of games is the supremum of PoA(I)
over all instances I of that class. For sequential games, the price of anarchy has
also been called the sequential price of anarchy [25]; it has been analyzed in
several settings [3,9,17,25].
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Table 1. Known results and improvements for lower bounds (lb) and upper bounds
(ub) on the price of anarchy for weighted simultaneous congestion games with two
players. The first columns indicate restriction ( ) to network or symmetric games or
no restriction ( ), as well as the cost function. In the first column, “ , ” indicates that
the upper bound holds in general, while the lower bound is attained even for network
routing games. Bounds are underlined if the gap between lower and upper bound is
closed. Empty cells indicate that there was no old bound or that there is no new bound.

Net Sym Cost Old lb New lb New ub Old ub Result

, 1.6 [8] 1.6 [7]

, uni 1.6 [8] 2 2 Theorem 4, Corollary 3

, prop 1.6 [8] ≈ 1.6096 ≈ 1.6096 ≈ 2.618 [1] Corollary 4

, 2 [folklore] 2 [7]

, uni 2 [folklore] ≈ 2.155 ≈ 2.155 Corollary 1

, prop 2 [folklore] ≈ 2.0411 ≈ 2.0411 ≈ 2.618 [1] Corollary 2

Contribution and Known Results. This paper gives the exact price of anarchy
results for several classes of weighted two-player congestion games with respect
to Nash equilibria for simultaneous games, and subgame-perfect equilibria for
sequential games. We further distinguish between arbitrary congestion games
and network routing games, uniform and proportional cost functions, as well
as symmetric and asymmetric games. This gives rise to 16 different classes of
two-player games. An overview of previously known bounds as well as new ones
presented in this paper can be found in Tables 1 and 2. The tables also contain
the previously known results for the special case of unweighted congestion games
(if known).

Table 2. Known results and improvements on the price of anarchy for weighted
sequential congestion games with two players.

Net Sym Cost Old lb New lb New ub Old ub Result

, 1.4 [8] 1.4 [8]

, uni 1.4 [8] 2 Corollary 5

, prop 1.4 [8] 1.5 Corollary 6

1.5 [17] 1.5 [17]

1 1.5 1.5 [17]

, uni 1 2 2 Corollary 5

, prop 1 1.5 1.5 Corollary 6

We not only give the worst-case bounds, but also prove the exact price of
anarchy bounds parametric in the weight ratio w1/w2 of the two players, which
provides additional insight. Figure 1 depicts these findings.
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Fig. 1. Price of anarchy for different types of weighted affine two-player congestion
games depending on the weight ratio w1/w2. No graphs are shown for sequential games
with symmetric strategy spaces, as tight lower bound instances are not known.

Our results close a gap in the existing literature on the analysis of equilibria
for affine congestion games. Let us therefore briefly discuss what is known.

The price of anarchy for unweighted affine congestion games with an arbitrary
number of players is known to be bounded from above by 5/2 [1,7]. This bound
is tight for n ≥ 3 players [7]. For unweighted two-player games, the tight bound
is 2 [7]. The 5/2 upper bound improves to (5n−2)/(2n+1) for symmetric games
with n players [7], which is tight even in the class of network routing games [8].
For non-symmetric, unweighted and affine congestion games, the bound 5/2 is
tight (for n → ∞) even for singleton congestion games, where each player chooses
a single resource only, i.e., |Ai| = 1 for all Ai ∈ Ai [6]. For unweighted and affine
singleton congestion games that are symmetric, so when each player can choose
every single resource, the price of anarchy equals 4/3 [19]. This singleton model
can also be interpreted as a network routing model with parallel source-sink arcs,
and is also dubbed the parallel link model, see e.g. [29].

For weighted affine congestion games, the price of anarchy with an arbitrary
number of players is slightly larger than 5/2; it equals 1 + φ with φ = (1 +√

5)/2 ≈ 1.618 being the golden ratio [1]. This is again tight for n ≥ 3 players [2].
Here, we are not aware of improved bounds for special cases or with two players.

For the sequential version of unweighted, affine congestion games, it is known
that the (sequential) price of anarchy equals 1.5 for two players [17], it equals
1039/488 ≈ 2.13 for n = 3 players [17], and for n = 4 players it equals
28679925/10823887 ≈ 2.65 [4]. Moreover, for symmetric network routing games
and two players, it equals 1.4 [8], while it can be as large as Ω(

√
n) for an

arbitrary number n of players [8].
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The above summary suggests that the potential loss of efficiency caused by
selfish players in affine congestion games is by now pretty well understood. Yet
the two-player case is a fundamental base case, and it does not seem to be well
understood when the two players are not identical, i.e., the weighted case. Our
results exhibit how the attributes of the game, such as symmetry of strategies,
proportionality of costs, or sequentiality, have effects on the price of anarchy,
which we believe are interesting and not obvious. It is conceivable that compa-
rable results can be expected for congestion games with more than two players.
However, extending our approach to, say, the case with three players, although
theoretically possible, seems to be tedious.

As to the technical approach and contribution of this paper, all our results
take as starting point a compact linear programming based idea to compute the
cost functions of worst-case instances that extends the one used for unweighted
congestion games in [17]. The linear program computes the parameters of all
resource cost functions for the finite worst case instance, which can be done
because it can be proved that such finite worst-case instances must exist [9,17].
However for weighted games this can only be done for any fixed pair of weights
w1, w2. Doing this for several weight ratios w1/w2, however, one can produce
“educated guesses” for the dependence of the cost parameters on the weights,
and the same can be done for the corresponding optimal dual solution. The
so derived expressions for primal and dual solutions can finally be turned into
algebraic proofs for a matching upper bound on the price of anarchy. This primal-
dual procedure is somewhat mechanical, yet non-trivial. Note that this approach
is reminiscent of the primal-dual technique as suggested in [2], however here we
work with a different linear programming formulation.

Outline. We present our results on the price of anarchy for simultaneous,
symmetric simultaneous and sequential games in Sect. 2. Our methodology is
explained in Sect. 3 and a few concluding remarks are made in Sect. 4.

2 Results

The main results of this paper are best summarized and illustrated in Fig. 1,
which displays the exact price of anarchy bounds in dependence on the weight
ratio w1/w2 for six different cases. This section supports this illustration: The
subsequent Theorems 1–7 give the exact price of anarchy bounds in dependence
on the players’ weights w1 and w2. Corollaries are obtained by taking the supre-
mum over all feasible weight pairs w1, w2, where “weight ratios” refers to the
ratios w1/w2 or w2/w1, respectively. Corresponding worst-case instances as well
as proofs can be found in the full version of our paper [5].

Theorem 1 (uniform, simultaneous, specific weights). Let w1, w2 ≥ 0
with w1 + w2 > 0. The price of anarchy for simultaneous uniformly weighted
two-player congestion/network routing games with weights w1, w2 is equal to

1 +
2w1w2 + max(w1, w2)2

w2
1 + w1w2 + w2

2

.
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Corollary 1 (uniform, simultaneous). The price of anarchy for simultane-
ous uniformly weighted two-player congestion/network routing games is equal to
1 + 2/

√
3 ≈ 2.155, which is attained for weight ratios equal to 1 +

√
3 ≈ 2.732.

Theorem 2 (proportional, simultaneous, specific weights). Let w1, w2 ≥
0 with w1+w2 > 0. The price of anarchy for simultaneous proportionally weighted
two-player congestion/network routing games with weights w1, w2 is equal to

1 + w1w2
w1 + w2 + max(w1, w2)

w3
1 + w3

2 + w1w2 min(w1, w2)
.

Corollary 2 (proportional, simultaneous). The price of anarchy for simul-
taneous proportionally weighted two-player congestion/network routing games is
approximately 2.0411, which is attained for weight ratios ≈ 1.2704.

For the next case we have an irrational weight ratio at which the behavior
changes. We denote it by τ := 1

3 (2 3
√

62 − 3
√

183 + 3
√

62 + 3
√

183) ≈ 3.1527.

Theorem 3 (uniform, symmetric, simultaneous, specific weights). Let
w1, w2 ≥ 0 with w1 + w2 > 0. The price of anarchy for symmetric simultaneous
uniformly weighted two-player congestion games with weights w1, w2 is equal to

(a) 3w3
1+9w2

1w2+9w1w2
2+3w2

2
2w3

1+5w2
1w2+5w1w2

2+2w3
2+w1w2 min(w1,w2)

if 1
2w2 ≤ w1 ≤ 2w2,

(b) 2w3
1+5w2

1w2+5w1w2
2+2w3

2+3max(w2
1w2+w3

1,w1w2
2+w3

2)

2w3
1+4w2

1w2+4w1w2
2+2w3

2
if 2w2 ≤ w1 ≤ τw2 or if

1
τ w2 ≤ w1 ≤ 1

2w2.

(c) 2w2
1+2w1w2+2w2

2
(w1+w2)2

if w1 ≥ τw2 or if w1 ≤ 1
τ w2.

Corollary 3 (uniform, symmetric, simultaneous, congestion). The price
of anarchy for symmetric simultaneous uniformly weighted two-player congestion
games is equal to 2, attained for weight rations → ∞.

Our computed worst case instances for which the price of anarchy approaches
its supremum are no network routing games. However, there is a family of net-
work routing games for which the price of anarchy also approaches 2, although
slower than that for congestion games.

Theorem 4 (uniform, symmetric simultaneous, network routing). The
price of anarchy for symmetric simultaneous uniformly weighted two-player net-
work routing games is equal to 2.

Also for proportional cost functions and symmetric games we have an irra-
tional weight ratio at which the behavior changes. It is the unique real root σ of
the polynomial x4 − 3x2 − 3x − 1 and is approximately σ ≈ 2.14790.

Theorem 5 (proportional, symmetric, simultaneous, specific weights).
Let w1, w2 ≥ 0 with w1 +w2 > 0. The price of anarchy for symmetric simultane-
ous proportionally weighted two-player congestion/network routing games with
weights w1, w2 is equal to
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(a) 2w4
1+6w3

1w2+8w2
1w2

2+6w1w3
2+2w4

2
2w4

1+3w3
1w2+4w2

1w2
2+3w1w3

2+2w4
2+w1w2 min(w2

1,w2
2)

if w2
σ ≤ w1 ≤ σw2.

(b) 2w3
1w2+4w2

1w2
2+2w1w3

2+2max(w4
1+w3

1w2,w1w3
2+w4

2)

w3
1w2+2w2

1w2
2+2w1w3

2+w4
2+2w1w2 min(w2

1,w2
2)+max(w4

1,w4
2)

if w1 ≥ σw2 or w1 ≤ w2
σ .

Corollary 4 (proportional, symmetric, simultaneous). The price of
anarchy for symmetric simultaneous proportionally weighted two-player conges-
tion/network routing games is ≈ 1.6096, attained for weight ratios ≈ 1.1940.

Theorem 6 (uniform, sequential, specific weights). Let w1, w2 ≥ 0 with
w1 + w2 > 0. The price of anarchy for sequential uniformly weighted two-player
congestion/network routing games with weights w1, w2 is equal to

(a) 1 + w1
w1+w2

if w2 ≤ w1,
(b) 1 + 2w1w2

2w2
1+w1w2+w2

2
if w1 ≤ w2 ≤ 2w1 and

(c) 1 + w2
2w1+w2

if w2 ≥ 2w1.

Note that the uniform, sequential case is the only case where the exact price of
anarchy is not symmetric around the weight ratio 1.

Corollary 5 (uniform, sequential). The price of anarchy for sequential uni-
formly weighted two-player congestion games is equal to 2, attained for weight
ratios → ∞.

Theorem 7 (proportional, sequential, specific weights). Let w1, w2 ≥ 0
with w1 + w2 > 0. The price of anarchy for sequential proportionally weighted
two-player congestion/network routing games with weights w1, w2 is equal to

1 +
w1w2

w2
1 + w2

2

.

Corollary 6 (proportional, sequential). The price of anarchy for sequential
proportionally weighted two-player congestion games is equal to 1.5, which is
attained if and only if w1 = w2 holds.

As symmetry cannot be handled by our approach for sequential games, a gap
remains between the lower and upper bounds; see Table 2. We briefly discuss
this issue in Sect. 3 preceding Theorem 8.

3 LP Based Proofs

First, observe that for fixed weights w1 and w2 the cost functions (1) and (2)
are linear. The idea of computing the price of anarchy is greedy: we construct an
LP for an instance of a game with a minimal set of actions A that are required
for a worst-case instance. The LP has as variables the cost parameters αr, βr of
the cost functions per resource r ∈ R. This is finite, since as in [17] we can argue
that by pigeonhole principle at most 2|A| resources are needed for any such an
instance: if two resources appear in precisely the same actions, then these could
be combined into one (adding their costs), which yields an instance with fewer
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resources but the same price of anarchy. Given that the LP’s cost functions per
resource are yet undetermined, one can w.l.o.g. “label” actions as social optimum
and equilibrium, respectively. These labels are A = {Aopt

1 , Aopt
2 , Aequi

1 , Aequi
2 }.

For sequential games we extend A by the label Aequi′
2 for an optimal action for

player 2 after player 1 has played Aopt
1 . The observation above justifies to view

resources as subsets of labels, i.e., R = 2A. Therefore, if r ∈ A, we can also
write A ∈ r, as we view r as the set of all actions A � r. In addition to the cost
variables αr, βr for each r ∈ R the LP has variables for the costs Ci(A1, A2) for
i = 1, 2 and for all labels Aj ∈ Aj that are admissible for player j ∈ {1, 2}. We
now introduce the constraints of the LP that ensure correctness of the labels and
then prove that optimal solutions indeed correspond to worst-case instances. We
start with the basic (but incomplete) LP:

max C1(A
equi
1 , Aequi

2 ) + C2(A
equi
1 , Aequi

2 ) (4a)

s.t. C1(A
opt
1 , Aopt

2 ) + C2(A
opt
1 , Aopt

2 ) = 1 (4b)
C1(A1, A2) + C2(A1, A2) ≥ 1 ∀A1 ∈ A1, ∀A2 ∈ A2 (4c)

αr, βr ≥ 0 ∀r ∈ R (4d)

Note that the normalization of the social optimum to 1 via (4b) is without loss
of generality since a value of 0 would also yield zero costs for each equilibrium.
In case of uniform cost functions (1) we add

Ci(A1, A2) =
∑

r∈R: Ai∈r

(αr + βr

∑

j:Aj∈r

wj) ∀A1 ∈ A1, ∀A2 ∈ A2, i = 1, 2 , (5)

while in case of proportional cost functions (2) we add

Ci(A1, A2) = wi

∑

r∈R: Ai∈r

(αr + βr

∑

j:Aj∈r

wj) ∀A1 ∈ A1, ∀A2 ∈ A2, i = 1, 2 . (6)

Simultaneous Games. For simultaneous games we need to add the Nash inequal-
ities (3) to enforce that Aequi

1 and Aequi
2 form a Nash equilibrium. For gen-

eral games we define A1 := {Aopt
1 , Aequi

1 } and A2 := {Aopt
2 , Aequi

2 }, while
for symmetric games we allow both players to use the union A1 := A2 :=
{Aopt

1 , Aequi
1 , Aopt

2 , Aequi
2 } of these actions.

Sequential Games. The following constraints model that Aequi
2 and Aequi′

2 are
optimal actions for player 2 after player 1 has played Aequi

1 and Aopt
1 , respectively,

as well as the requirement that Aequi
1 is a subgame-perfect action for player 1:

C2(A
equi
1 , Aequi

2 ) ≤ C2(A
equi
1 , A2) ∀A2 ∈ A2, (7a)

C2(A
opt
1 , Aequi′

2 ) ≤ C2(A
opt
1 , A2) ∀A2 ∈ A2, (7b)

C1(A
equi
1 , Aequi

2 ) ≤ C1(A
opt
1 , Aequi′

2 ). (7c)
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We thus define A1 := {Aopt
1 , Aequi

1 } and A2 := {Aopt
2 , Aequi

2 , Aequi′
2 }. Our app-

roach does not work for symmetric sequential games. The reason is that if the
actions from A2 are available to player 1 as well, then for each of these actions we
would need to introduce new actions for the subgame-perfect action of player 2
in such a case, which in turn would be available to player 1, and so on.

We now establish correctness of all variants of this LP.

Theorem 8. For fixed weights w1, w2 ≥ 0 with w1 + w2 > 0 the LP (4) for
the action sets A1,A2 specified above, and extended by either (5) or (6) and by
either (3) or (7) computes the price of anarchy for affine (sequential or simulta-
neous or symmetric simultaneous) congestion games with these specific weights.

Proof. Consider a class of games and an LP as defined in the theorem. It is
straight forward to see that every primal solution of the LP actually represents
a game and that the objective value is equal to its price of anarchy.

It remains to show that for every game there exists a primal solution of the
LP such that its objective value is equal to the price of anarchy of that game.
To this end, consider a game with resources R̄, actions Ā1, Ā2 ⊆ 2R̄ for the two
players as well as cost coefficients ᾱ, β̄ ∈ R

R̄. By scaling we can assume that the
cost of the social optimum is equal to 1. We now create a mapping π from labels
to the game’s actions. To this end, let π(Aopt

1 ) ∈ Ā1 and π(Aopt
2 ) ∈ Ā2 be actions

that constitute a social optimum. Moreover, we consider an equilibrium (either
Nash or subgame-perfect) for which the price of anarchy of this game is attained
and let π(Aequi

1 ) ∈ Ā1 and π(Aequi
2 ) ∈ Ā2 constitute such an equilibrium. In

the sequential case, let π(Aequi′
2 ) ∈ Ā2 be an action that is subgame-perfect for

player 2 after player 1 has played π(Aopt
1 ).

The mapping π of labels A to actions π(A) ⊆ Ā identifies the “relevant”
actions from Ā. For any resource r̄ ∈ R̄, we can now associate with it the
“incidence pattern” of the set of actions from π(A) in which r̄ is contained. This
induces a reverse mapping χ that maps each resource r̄ ∈ R̄ to the unique r ∈ R
that has the same incidences. Formally, A ∈ χ(r̄) ⇐⇒ r̄ ∈ π(A) must hold for
all A ∈ A. This allows us to aggregate the resources R̄ accordingly via

αr :=
∑

r̄ : r=χ(r̄)

ᾱr̄ and βr :=
∑

r̄ : r=χ(r̄)

β̄r̄. (8)

By Eqs. (5) or (6), the values of the remaining variables are determined uniquely.
Moreover, (8) ensures that for i = 1, 2 and for any profile (A1, A2) ∈ A1 × A2,
Ci(A1, A2) is equal to the cost of player i if actions π(A1) and π(A2) are played
in the game. In particular, constraints (4b), (4c) as well as either (3) or (7) are
satisfied. Consequently, the objective value corresponds to the price of anarchy
of this game since the social optimum equals 1. Hence the value of the optimal
LP solution equals the price of anarchy for the given class of games. ��

Arbitrary Weights. In order to derive the price of anarchy for arbitrary weights,
the LPs from Theorem 8 can be used as an auxiliary tool. First, an approximate
version of Fig. 1 can be produced, from which we could guess intervals of weight
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ratios w1/w2 for which the same LP basis is optimal. Second, for each such
interval, several weight pairs are chosen and optimal primal and dual solutions
are computed. Using the LP solver SoPlex, we computed exact rational solutions
(see [12]), which helped to derive educated guesses for algebraic expressions.

Even though this procedure is the core of our contribution, due to space
constraints we could not include it here. A concrete example of such a derivation
can be found in the full version of our paper [5]. Here, we still mention two tricks
that were important. First, cancellations in the expressions can be avoided by
choosing prime numbers for the weights. Second, we observed that often several
optimal solutions exist, which makes it hard to make an educated guess of the
weight-dependent expression for each variable. We were able to circumvent this
difficulty by forcing some of the cost variables to 0 while ensuring that optimality
of the solution is maintained.

4 Concluding Remarks

One of the findings of our paper is the fact that the worst-cases for simultane-
ous games are attained for players’ weights that differ only slightly, and that
sequential play reduces the price of anarchy irrespective of the players’ weights.
While for simultaneous games the symmetry with respect to players implies that
the prices of anarchy for weight ratios λ and 1/λ are equal, no such implication
holds for sequential games. Surprisingly, a different symmetry holds for sequen-
tial games with uniform costs, namely equality for weight ratios λ/2 and 1/λ.
As to methodology, the algebraic expressions for the price of anarchy are already
quite complicated for two players, especially for symmetric simultaneous games.
Hence, a similar analysis for the 3-player case seems to be out of reach.
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