48 research outputs found

    Integrated Pangenome Analysis and Pharmacophore Modeling Revealed Potential Novel Inhibitors against Enterobacter xiangfangensis

    Get PDF
    Enterobacter xiangfangensis is a novel, multidrug-resistant pathogen belonging to the Enterobacter genus and has the ability to acquire resistance to multiple antibiotic classes. However, there is currently no registered E. xiangfangensis drug on the market that has been shown to be effective. Hence, there is an urgent need to identify novel therapeutic targets and effective treatments for E. xiangfangensis. In the current study, a bacterial pan genome analysis and subtractive proteomics approach was employed to the core proteomes of six strains of E. xiangfangensis using several bioinformatic tools, software, and servers. However, 2611 nonredundant proteins were predicted from the 21,720 core proteins of core proteome. Out of 2611 nonredundant proteins, 372 were obtained from Geptop2.0 as essential proteins. After the subtractive proteomics and subcellular localization analysis, only 133 proteins were found in cytoplasm. All cytoplasmic proteins were examined using BLASTp against the virulence factor database, which classifies 20 therapeutic targets as virulent. Out of these 20, 3 cytoplasmic proteins: ferric iron uptake transcriptional regulator (FUR), UDP-2,3diacylglucosamine diphosphatase (UDP), and lipid-A-disaccharide synthase (lpxB) were chosen as potential drug targets. These drug targets are important for bacterial survival, virulence, and growth and could be used as therapeutic targets. More than 2500 plant chemicals were used to molecularly dock these proteins. Furthermore, the lowest-binding energetic docked compounds were found. The top five hit compounds, Adenine, Mollugin, Xanthohumol C, Sakuranetin, and Toosendanin demonstrated optimum binding against all three target proteins. Furthermore, molecular dynamics simulations and MM/GBSA analyses validated the stability of ligand–protein complexes and revealed that these compounds could serve as potential E. xiangfangensis replication inhibitors. Consequently, this study marks a significant step forward in the creation of new and powerful drugs against E. xiangfangensis. Future studies should validate these targets experimentally to prove their function in E. xiangfangensis survival and virulence

    Influence of foliar spray and post-harvest treatments on head yield, shelf-life, and physicochemical qualities of broccoli

    Get PDF
    Rapid senescence is the key factor in the deterioration of post-harvest shelf-life in broccoli heads. This study evaluates the head yield and its related traits, and physicochemical attributes of broccoli under four foliar sprays of mineral nutrients (B, Zn, Mo, and B + Zn + Mo) with control. The interaction effects of shelf-life and physicochemical attributes of broccoli for these five pre-harvest and five post-harvest storage treatments (LDP bag, HDP vacuum pack, 2% eggshell powder solution, 2% ascorbic acid, and control) both at cold storage and room temperature were evaluated with three replications. The significantly higher marketable head yield of 28.02 t ha−1, maximum gross return [(Bangladesh Taka (BDT 420300 ha−1)], net return (BDT 30565 ha−1), and maximum benefit–cost ratio (BCR) of 3.67 were obtained from the pre-harvest foliar application of B + Zn + Mo in broccoli. Pre-harvest foliar spray of combined nutrient B + Zn + Mo and post-harvest treatment high-density polyethylene (HDP, 15 μm) vacuum packaging efficiently improve post-harvest physicochemical attributes, viz., compactness, green color, texture, carbohydrates, fats, energy, antioxidants, vitamin C, and total phenols in broccoli head compared to the rest of the treatment combinations. In addition, this treatment combination also confirmed a maximum shelf-life of 24.55 days at cold storage [relative humidity (RH) 90–95% and 4°C] and 7.05 days at room temperature (RH 60–65% and 14–22°C) compared to the rest of the treatment combinations. Therefore, we recommend a pre-harvest foliar spray of combined nutrient elements B + Zn + Mo and an HDP (15 μm) vacuum post-harvest packaging for the maximum benefits for both farmers and consumers to get the best head yield, anticipated physicochemical attributes, and maximum shelf-life of broccoli

    Application of silicon and sodium hydrosulfide alleviates arsenic toxicity by regulating the physio-biochemical and molecular mechanisms of Zea mays

    Get PDF
    Soil contaminationwith toxic heavy metals (such as arsenic (As)) is becoming a serious global problem due to rapid development of social economy, although the use of silicon (Si) and sodium hydrosulfide (NaHS) has been found effective in enhancing plant tolerance against biotic and abiotic stresses including the As toxicity. For this purpose, a pot experiment was conducted using the different levels of As toxicity in the soil, i.e., (0 mM (no As), 50, and 100 µM) which were also supplied with the different exogenous levels of Si, i.e., (0 (no Si), 1.5, and 3 mM) and also with the NaHS, i.e., (0 (no NaHS), 1, and 2 mM) on growth, photosynthetic pigments, gas exchange characteristics, oxidative stress biomarkers, antioxidant machinery (enzymatic and non-enzymatic antioxidants), and their gene expression, ion uptake, organic acid exudation, and As uptake of maize (Zea mays L.). Results from the present study showed that the increasing levels of As in the soil significantly (P \u3c 0.05) decreased plant growth and biomass, photosynthetic pigments, gas exchange attributes, sugars, and nutritional contents from the roots and shoots of the plants. In contrast, increasing levels of As in the soil significantly (P \u3c 0.05) increased oxidative stress indicators in terms of malondialdehyde, hydrogen peroxide, and electrolyte leakage and also increased organic acid exudation patter in the roots of Z. mays, although the activities of enzymatic antioxidants and the response of their gene expressions in the roots and shoots of the plants and non-enzymatic such as phenolic, flavonoid, ascorbic acid, and anthocyanin contents were initially increased with the exposure of 50 µM As, but decreased by the increasing the As concentration 100 µM in the soil. The negative impact of As toxicity can overcome the application of Si and NaHS, which ultimately increased plant growth and biomass by capturing the reactive oxygen species and decreased oxidative stress in Z. mays by decreasing the As contents in the roots and shoots of the plants. Our results also showed that the Si was more sever and showed better results when we compared with NaHS under the same treatment of As in the soil. Research findings, therefore, suggest that the combined application of Si and NaHS can ameliorate As toxicity in Z. mays, resulting in improved plant growth and composition under metal stress, as depicted by balanced exudation of organic acids

    An Overview of Ripening Processes

    Get PDF
    The chapter aims to address an overview of the new discoveries regarding the methods of ripening processes. The chapter presents the latest methods used in fruit and vegetable ripening processes, ripening processes in the food industry, enzymatic ripening processes, and artificial ripening processes. Nowadays everyone wants all kinds of food to be available in every season. Naturally, we find fruits and vegetables in their ripening season, but in order to provide the population with fruit out of season, we import them from different countries, which are not harvested at full maturity, and different adjuvant ripening methods are used. Processed foods are also subjected to ripening processes, the most used being cheese and meat products. These foods are some of the most valued foods nowadays, they are considered luxury products with superior nutritional and taste properties. To achieve these ripening processes, enzymatic processes or artificial ripening are also involved. The purpose of using these processes is to provide consumers with fresh out-of-season food or food with a high degree of sensory and nutritional properties, and at the same time with a superior degree of quality and safety, because the safety of the consumer comes first

    Bacillus thuringiensis PM25 ameliorates oxidative damage of salinity stress in maize via regulating growth, leaf pigments, antioxidant defense system, and stress responsive gene expression

    Get PDF
    Soil salinity is the major abiotic stress that disrupts nutrient uptake, hinders plant growth, and threatens agricultural production. Plant growth-promoting rhizobacteria (PGPR) are the most promising eco-friendly beneficial microorganisms that can be used to improve plant responses against biotic and abiotic stresses. In this study, a previously identified B. thuringiensis PM25 showed tolerance to salinity stress up to 3 M NaCl. The Halo-tolerant Bacillus thuringiensis PM25 demonstrated distinct salinity tolerance and enhance plant growth-promoting activities under salinity stress. Antibiotic-resistant Iturin C (ItuC) and bio-surfactant-producing (sfp and srfAA) genes that confer biotic and abiotic stresses were also amplified in B. thuringiensis PM25. Under salinity stress, the physiological and molecular processes were followed by the over-expression of stress-related genes (APX and SOD) in B. thuringiensis PM25. The results detected that B. thuringiensis PM25 inoculation substantially improved phenotypic traits, chlorophyll content, radical scavenging capability, and relative water content under salinity stress. Under salinity stress, the inoculation of B. thuringiensis PM25 significantly increased antioxidant enzyme levels in inoculated maize as compared to uninoculated plants. In addition, B. thuringiensis PM25-inoculation dramatically increased soluble sugars, proteins, total phenols, and flavonoids in maize as compared to uninoculated plants. The inoculation of B. thuringiensis PM25 significantly reduced oxidative burst in inoculated maize under salinity stress, compared to uninoculated plants. Furthermore, B. thuringiensis PM25-inoculated plants had higher levels of compatible solutes than uninoculated controls. The current results demonstrated that B. thuringiensis PM25 plays an important role in reducing salinity stress by influencing antioxidant defense systems and abiotic stress-related genes. These findings also suggest that multi-stress tolerant B. thuringiensis PM25 could enhance plant growth by mitigating salt stress, which might be used as an innovative tool for enhancing plant yield and productivity

    Assessment of sublethal and transgenerational effects of spirotetramat, on population growth of cabbage aphid, Brevicoryne brassicae L. (Hemiptera: Aphididae)

    Get PDF
    The cabbage aphid (Brevicoryne brassicae L.) is a devastating pest of cruciferous crops causing economic damage worldwide and notably owing to its increasing resistance to commonly used pesticides. Such resistance prompts the development of integrated pest management (IPM) programs that include novel pesticides being effective against the aphids. Spirotetramat is a novel insecticide used against sap-sucking insect pests, particularly aphids. This study evaluated the toxicity of spirotetramat to adult apterous B. brassicae after 72 h using the leaf dipping method. According to the toxicity bioassay results, the LC50 value of spirotetramat to B. brassicae was 1.304 mgL−1. However, the sublethal concentrations (LC5 and LC15) and transgenerational effects of this novel insecticide on population growth parameters were estimated using the age-stage, two-sex life table theory method. The sublethal concentrations (LC5; 0.125 mgL−1 and LC15; 0.298 mgL−1) of spirotetramat reduced the adult longevity and fecundity of the parent generation (F0). These concentrations prolonged the preadult developmental duration while decreasing preadult survival, adult longevity and reproduction of the F1 generation. The adult pre-reproductive period was also extended by spirotetramat treatment groups. Subsequently, the population growth parameters such as the intrinsic rate of increase r, finite rate of increase λ and net reproductive rate R0 of the F1 generation were decreased in spirotetramat treatment groups whereas, the mean generation time T of the F1 generation was not affected when compared to the control. These results indicated the negative effect of sublethal concentrations of spirotetramat on the performance of B. brassicae by reducing its nymphal survival, extending the duration of some immature stages and suppressing the population growth of B. brassicae. Overall, we demonstrated that spirotetramat is a pesticide showing both sublethal activities, and transgenerational effects on cabbage aphid; it may be useful for implementation in IPM programs against this aphid pest

    The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra

    Get PDF
    This paper documents the 16th data release (DR16) from the Sloan Digital Sky Surveys (SDSS), the fourth and penultimate from the fourth phase (SDSS-IV). This is the first release of data from the Southern Hemisphere survey of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2); new data from APOGEE-2 North are also included. DR16 is also notable as the final data release for the main cosmological program of the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and all raw and reduced spectra from that project are released here. DR16 also includes all the data from the Time Domain Spectroscopic Survey and new data from the SPectroscopic IDentification of ERosita Survey programs, both of which were co-observed on eBOSS plates. DR16 has no new data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (or the MaNGA Stellar Library "MaStar"). We also preview future SDSS-V operations (due to start in 2020), and summarize plans for the final SDSS-IV data release (DR17)
    corecore