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Abstract: Enterobacter xiangfangensis is a novel, multidrug-resistant pathogen belonging to the
Enterobacter genus and has the ability to acquire resistance to multiple antibiotic classes.
However, there is currently no registered E. xiangfangensis drug on the market that has been
shown to be effective. Hence, there is an urgent need to identify novel therapeutic targets and
effective treatments for E. xiangfangensis. In the current study, a bacterial pan genome analysis and
subtractive proteomics approach was employed to the core proteomes of six strains of E.
xiangfangensis using several bioinformatic tools, software, and servers. However, 2611
nonredundant proteins were predicted from the 21,720 core proteins of core proteome. Out of
2611 nonredundant proteins, 372 were obtained from Geptop2.0 as essential proteins. After the
subtractive proteomics and subcellular localization analysis, only 133 proteins were found in
cytoplasm. All cytoplasmic proteins were examined using BLASTp against the virulence factor
database, which classifies 20 therapeutic targets as virulent. Out of these 20, 3 cytoplasmic
proteins: ferric iron uptake transcriptional regulator (FUR), UDP-2,3diacylglucosamine
diphosphatase (UDP), and lipid-A-disaccharide synthase (lpxB) were chosen as potential drug
targets. These drug targets are important for bacterial survival, virulence, and growth and could
be used as therapeutic targets. More than 2500 plant chemicals were used to molecularly dock
these proteins. Furthermore, the lowest-binding energetic docked compounds were found. The
top five hit compounds, Adenine, Mollugin, Xanthohumol C, Sakuranetin, and Toosendanin
demonstrated optimum binding against all three target proteins. Furthermore, molecular
dynamics simulations and MM/GBSA analyses validated the stability of ligand–protein complexes
and revealed that these compounds could serve as potential E. xiangfangensis replication inhibitors.
Consequently, this study marks a significant step forward in the creation of new and powerful
drugs against E. xiangfangensis. Future studies should validate these targets experimentally to
prove their function in E. xiangfangensis survival and virulence.
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1. Introduction
Enterobacter is a genus of facultatively anaerobic, rod-shaped, Gram-negative

bacteria of the Enterobacteriaceae family that is mainly associated with
healthcare-related infections. Currently, there are 22 different types of Enterobacter [1].
Many previously successful antibiotics have become increasingly ineffective against
Enterobacter. The primary mechanism of antibiotic resistance in Enterobacter species is
the presence of beta-lactamases. Beta-lactamases can hydrolyze the beta-lactam ring
found in cephalosporins and penicillin. The existence of this enzyme has contributed to
an increase in resistant Enterobacter pathogens [2]. The World Health Organization
published a list of bacteria that were resistant to medicines in 2017, and
carbapenem-resistant enterobacteriaceae was included in the critical priority group for
the urgent need to discover new antibiotics [3].

Enterobacter xiangfangensis is a motile, Gram-negative bacterium with a size of 0.8–1
1–1.5 m. It is a common pathogen in China [4]. Many hospital-acquired infections are
caused by E. xiangfangensis, which has a high level of resistance to broad-spectrum
antibiotics [5]. The bacteria can also obtain carbapenemase genes from other
Enterobacter species, according to reports [6]. There is no appropriate vaccination for E.
xiangfangensis, which exacerbates the global issue [7]. Recommendations, such as
adapting antibiotic management programs and improving diagnostic decision-making
processes, and follow-up can increase the efficacy of infectious disease therapy and slow
the emergence of bacterial resistance [8]. Hence, the development of an effective
treatment strategy for E. xiangfangensis, as well as potent drugs and novel therapeutic
targets, is critical.

Traditional methods for finding new drugs are costly and time-consuming, but
newer technology has overcome these drawbacks. Through the use of computational
analytic techniques, such as core genome and subtractive genomics, the modern
genomic era has made it possible to search for potential therapeutic targets at the
genome level in bacteria [9]. Subtractive genomic and core genome approaches have
been developed to discover the core essential genomes that are distinct from the human
genome [10–12] and further integration with bioinformatics provided much better
results [11,13,14]. These methods have been used to combat a variety of human
pathogens, including Shigella sonnei, Staphylococcus aureus, Mycoplasma pneumonia,
Streptococcus Pyogenes, Staphylococcus saprophyticus, and Chlamydia trachomatis [15–20].
This research will use in silico methods to connect the proteome and genomic data of the
E. xiangfangensis species in order to pinpoint potential drugs. It can be used to classify
effective inhibitors, assisting in the discovery of drugs that can limit pathogenic
progression [21]. A pan genome approach was used in the current study to compare the
proteomes from the six E. xiangfangensis genomes, and only the genes that were shared
by all E. xiangfangensis strains were chosen. The core genome was subsequently filtered
based on bacterial essentiality and host nonhomology. Among these proteins,
cytoplasmic proteins were found to be good drug targets. A library of 2500 plant
compounds was used for virtual screening on these nonhost homologous and essential
protein targets. The proposed innovative lead druggable compounds that can bind to
the indicated target proteins can then be produced based on the identified putative
targets.
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2. Materials and Methods
2.1. Retrieval and Pan Genome Analysis of Bacterial Proteome

E. xiangfangensis proteomes were downloaded from the NCBI database and then
subjected to OrthoFinder program (University of Oxford, Oxford, UK) without altering
the default parameters [22]. OrthoFinder performs calculations based on BLAST
searches. So, internal scripts were developed for the finding of core genes in all
understudied strains. The core sequences were then taken into consideration for
additional downward analysis. Previously isolated E. xiangfangensis (isolated from ear,
blood, urine, and sputum) was kept in frozen (−9 °C) stocks that had been provided with
20% (v/v) glycerol. The strains were identified using different tests, such as the Gram
reaction, cell morphology, and catalase assays. 16S rDNA sequencing analysis and the
API 50 CHL test (bio-Merieux, France) were used to identify the strains

2.2. Redundancy Analysis and Identification of Essential Proteins
Paralogous genes, which are duplicated genes, are typically not necessary for the

development of drug. The CD-HIT web server was employed at 80% efficiency to
eliminate redundant proteins and extract non-redundant core sequences [23]. It is
believed that essential proteins are the basis of life and are required by organisms for
their survival. Essential proteins were obtained through the use of the Geptop 2.0 server
[24].

2.3. Homology Analysis and Subcellular Localization
The thresholds used were bits score of less than 100 and an e-value less than 0.0001,

and the BLOSUM 62 matrix was chosen. Using BLASTp, a tool in NCBI-BLAST that
identifies nonhomologous sequences, the proteome of Homo sapiens and the essential
proteins of E. xiangfangensis were compared [25]. Predicting a protein’s precise
subcellular location is a straightforward and very inexpensive method to learn about its
function. Furthermore, because proteins can be located at various places, localization is a
key part of creating any therapeutic agent. Subcellular localization of proteins from E.
xiangfangensis was determined by Psortb [26]. Psortb is a web-based tool for pinpointing
a protein’s subcellular location, including whether it is periplasmic, cytoplasmic
membrane, or cytoplasmic.

2.4. Identification of Virulent Proteins
All cytoplasmic proteins were tested for virulence using the virulence factor

database (VFDB), which determines the pathogenic virulence of the target proteins [27].
These proteins were considered to be virulence-inducing when they met the following
criteria: bit score of more than 100 and sequence identity of more than 30%.

2.5. Druggability Analysis and Drug Target Prioritization
Druggability testing was performed on selected virulent proteins. DrugBank is a

helpful resource for tracking proteins that are affected by inhibitors and drugs
employing a BLAST analysis with an e-value of 10−5 [28]. Several factors are used to
determine potential therapeutics, including transmembrane helix, molecular weight,
stability, molecular functions, and biological processes. TMHMM-2.0 was used to
perform transmembrane helix analysis [19]. Since 0 transmembrane helix proteins are
easy to express and clone, they were chosen for future research. ProtParam tool was
used to calculate the molecular weight (MW) and stability [29,30]. Proteins with stable
physicochemical properties and MW < 100 kDa are thought to be the best therapeutic
targets. Molecular functions and biological processes were predicted by InterProScan
server [31].
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2.6. Structure Prediction and Preparation
The 3D structure of all target proteins was predicted through I-TASSER server [32].

To evaluate how accurately the model predicts, I-TASSER offers confidence scores. The
ProsAweb [33], Verify 3D [34], RAMPAGE [13], and ERRAT [35] tools were further used
to validate the quality of all 3D structures. RAMPAGE, which conducts Ramachandran
plot analysis, provides a 3D structural validity score for the target proteins. A score of
≥80 was regarded as satisfactory. For further confirmation, ERRAT, an online program
that offers details about the protein structure with problematic areas, was used. The
quality factor ≥37% was regarded as good.

Predicted 3D structures were prepared for docking using the Molecular Operating
Environment (MOE) [36]. Along with the careful algorithm, this tool is quite durable. It
also predicts the root mean square deviation (RMSD) and computed energies of docked
molecules in addition to the top-ranking positions. These three-dimensional structures
underwent 3D protonation and energy minimization, after which they served as
templates for molecular docking.

2.7. Ligands Retrieval
A total of 2500 plant compounds were retrieved from Pubchem, Zinc database,

MAPS, and MPD3 database [37,38]. The partial charges of these compounds were then
computed and their energies were minimized via an algorithm for energy minimization
with default parameters. The .mdb file was used to store all minimized structures. These
ready-made ligands were then utilized as input data for molecular docking.

2.8. Molecular Docking and MD Simulation
The molecular docking in the MOE tool was then performed on the minimized

structures of the ligands and targeted proteins [37]. After docking, we looked at the best
poses for hydrogen bonding/interactions and calculated RMSD in MOE. Chimera was
used to investigate the best dock molecules’ orientation [38]. MD simulation is critical
for determining how docked complexes keep their structural stability and dynamics.
MD simulations of antibacterial drugs bound to target proteins were performed using
the AMBER18 software [39]. To create a neutral system, H2O molecules were first used
to dissolve the top docked complexes, and then counter ions were added. The complexes
were then enclosed in a water box that was generated using the TIP3P solvent model
and had a thickness of 12 Å [40]. Periodic boundary conditions were used to model the
docked complexes. Furthermore, a boundary value of 8 Å was assigned for nonbounded
interactions. After 500 cycles of minimizing water molecules, the complete system was
reduced to 1000 cycles. Then, each system’s temperature was slowly raised to 300 K.
Using the NPT ensemble, the systems were balanced for 100 ps. During the equilibration
of counter ions and water molecules, solutes in the first phase were restrained for 50 ps,
and protein side chains were then permitted to relax. An MD simulation lasting 100 ns at
300 K and 1 atm was carried out using the NPT ensemble. The SHAKE algorithm was
used to manage the covalent and hydrogen bonds [41], and Langevin dynamics were
used to control the system’s temperature [42]. AMBER’s CPPTRAJ was used to generate
an RMSD plot to confirm that the MD simulation was converging. The initial structure
was used as a baseline [43–45]. The ligand RMSD method was used to determine the
structural flexibility of ligands [46]. The complex’s three-dimensional packing and
compactness were investigated in RoG. The average root mean square distance between
the average geometric position of an atom and the average position of that atom in a
given dynamic is measured by the RMSF [47].

2.9. Binding Free Energy Calculation
The MM-GBSA method in AMBER 18 was used to calculate the binding free

energies (ΔGtol) of E. xiangfangensis proteins complexed with the most promising hit
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compounds. In short, 10,000 snapshots were made from the last 20 ns of stable paths for
each system, with a 2 ps gap between each one. The sum of the molecular mechanics
binding energy (EMM) and the solvation free energy (Gsol) equals the total binding free
energy, as illustrated below.

ΔEgas = ΔEele + ΔEint + ΔEvdw

ΔGsol = ΔGp + ΔGNp

ΔGtol = ΔEMM + ΔGsol

where EMM is subdivided further into electrostatic energy (ΔEele), van der Waals
energy (ΔEvdw), and internal energy (ΔEint). The sum of the polar (ΔGp) and nonpolar
(ΔGNp) components determines the total solvation free energy (ΔGsol). The MM-GBSA
method has been proven to be accurate in the assessment of binding-free antibacterial
inhibitors.

2.10. Physiochemical Profiling
Drug-likeness and molecular descriptors of phytochemicals with the highest

docking scores were examined through the Molinspiration server, which makes
predictions based on the “rule of five” [48,49]. Criteria include having a molecular mass
less than 500 Daltons, an analogue P value less than 5, 5 hydrogen bond donors, and up
to 10 acceptors of hydrogen bonds. AdmetSAR can be used to analyze the
pharmacokinetic characteristics of substances, including their distribution, metabolism,
adsorption, toxicity, and excretion [50].

3. Results
3.1. E. xiangfangensis Proteome Retrieval and Identification of Essential Nonhomologous
Proteins

In this study, six complete proteomes of E. xiangfangensis were obtained from the
NCBI database: (i) GCA_003999755.1, (ii) GCA_000814225.1, (iii) GCA_001729785.1, (iv)
GCA_003964795.2, (v) GCA_014931695.1, and (vi) GCA_000807405.4). Several filters
were used in the retrieval step, including complete proteomes, humans as hosts, and
incomplete proteomes. Core proteome of E. xiangfangensis was extracted from the six
complete proteomes using the OrthoFinder program. The pathogen has 21,720 core
proteins, according to the OrthoFinder results, while the CD-HIT analysis found that
there are 19,109 redundant proteins and 2611 nonredundant proteins in the pathogen
core proteins. The essential E. xiangfangensis proteins were predicted using Geptop2.0
(Chengdu, China). Out of 2611 nonredundant proteins, 372 were obtained from
Geptop2.0 as essential proteins. Nonhomologous analysis was used to find protein
targets that are absent from the host (Homo sapiens) in the 372 essential proteins. E.
xiangfangensis proteins and the proteome of Homo sapiens were compared. Only 195
proteins were discovered to be similar to human proteins as a result of this analysis,
with the remaining 177 proteins being classified as nonhomologous due to their lack of
significant resemblance.

3.2. Subcellular Localization
Proteins can be identified as vaccine or drug targets based on their localization. The

177 proteins chosen for this study were also examined for subcellular localization.
According to the findings, 133 of the 177 proteins were located in the cytoplasm. The 133
cytoplasmic proteins were added for further examination because they can be used as
drug targets.

3.3. Identification of Virulent Proteins and Druggability Analysis
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All cytoplasmic proteins were examined using BLASTp against the virulence factor
database, which classifies 20 therapeutic targets as virulent. Another crucial
characteristic for possible therapeutic targets is druggability. Druggable targets are
proteins that have already been targeted by drugs, while novel targets are proteins that
have yet to be targeted. According to the findings, seven proteins did not match any of
the DrugBank drug targets, while the remaining thirteen proteins did. These seven
proteins were, therefore, viewed as novel targets and became the topic of additional
research.

3.4. Drug Target Prioritization
Several factors were taken into consideration to identify the potential therapeutic

targets. Transmembrane helices of novel drug targets were predicted by TMHMM
server. Proteins having 0 transmembrane helices are considered as good drug targets.
Out of seven novel targets, six proteins were observed to have 0 transmembrane helices.
Molecular weight and stability of these six proteins were checked by Protaparam server.
Out of six, four proteins were found to be stable and have MW < 100 kDa. Drug
discovery depends on understanding the biological process, molecular function, and
structural information of proteins. According to functional prediction results of
InterProScan, three proteins were screened as drug targets. Details of these three drug
targets are listed in Table 1.

Table 1. Details of selected drug targets.

Proteins
Subcellular
Localization

Transmembrane
Helices

Molecular
Weight

Stability Molecular Function
Biological
Processes

Ferric iron uptake
transcriptional
regulator (FUR)

Cytoplasm 0 16,765.81 Stable
DNA-binding

transcription factor
activity

regulation of
transcription,

DNA-templated
UDP-2,3diacylglucos

amine
diphosphatase

(UDP)

Cytoplasm 0 26,832.02 Stable
pyrophosphatase

activity
hydrolase activity

lipid A
biosynthetic
process

lipid-A-disaccharide
synthase
(lpxB)

Cytoplasm 0 42,472.56 Stable
lipid-A-disaccharide
synthase activity

lipid A
biosynthetic
process

3.5. Structure Prediction
3D structures of three target proteins were predicted by I-Tasser (Figure 1).

ProsAweb, Verify 3D, RAMPAGE, and ERRAT were used to validate the quality factor
of 3D structures of target proteins. As shown in Table 2, the quality factors/compatibility
score predicted by tools were ≥80. These scores indicate that our proteins’ 3D structures
are suitable for docking.
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Figure 1. 3D structures of drug targets predicted by I-Tasser.

Table 2. Structural validation of target proteins.

Scores FUR Protein UDP Protein lpxB Protein
C-score −6.02 −4.98 −7.87

Estimated TM-score 0.91 ± 0.05 0.85 ± 0.09 0.74 ± 0.08
ProSA

Z Score −7.65 −8.35 −6.98
Verify 3D

Compatibility Score 81.71 83.89 80.03
Errat

Quality Factor 91.76 87.56 90.67
Ramachandran plot (%)

Core 90.2% 83.7% 88.7%
Allowed 6.6% 12.8% 7.9%
General 2.0% 1.4% 2.9%

Disallowed 1.9% 1.5% 1.8%

3.6. Molecular Docking
Docking against three drug targets with 2500 plant compounds was carried out

using the MOE tool. After redocking the top 100 compounds into target protein binding
pockets, the top five molecules were selected. The interaction residues (Table 3) of all
three target proteins were found to bind with great affinity to adenine, Mollugin,
Xanthohumol C, Sakuranetin, and Toosendanin (Figure 2).
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Figure 2. 2D structures of top five plant compounds.

Table 3. Docking statistics of target proteins against plant compounds.

Compounds
Name and ID

FUR Protein UDP Protein lpxB Protein
Binding
Affinity

Inhibition
Constant

RMSD Interacting
Residues

Binding
Affinity

Inhibition
Constant

RMSD Interacting
Residues

Binding
Affinity

Inhibition
Constant

RMSD Interacting
Residues

Adenine (190) −18.7 67.1 μM 0.9
Asn A72,Phe

A73,Gly A75,Glu
A74

−11.6 58.7 μM 2.5

Cys A119,His
A195,Tyr
A125,Lys
A167,Asp

A122,Met A172

−15.3 69.9 μM 1.8 Phe A153,Trp
B301,Lys B304

Mollugin
(124219) −16.2 72.2 μM 1.2

Glu A74,Arg
B70,Gly A76,Asn
A72,Gly A75

−19.8 75.2 μM 0.7
Tyr A125,Cys
A119,Met

A172,His A197
−18.8 89.6 μM 1.1 Trp B301,Phe

A153,Lys B 304

xanthohumol C
(10338075) −14.5 85.2 μM 1.8 Tyr B128,Asn

B72,Gly A75, −15.3 80.1 μM 1.5 Ala A153,Ala
A45,Met A156 −16.2 72.7 μM 0.8

Leu A147,Leu
B314,Phe A153,Trp

B301

Sakuranetin
(73571) −13.6 76.4 μM 0.8

Tyr B128,Asn
A72,Asp B63 −14.9 90.3 μM 2.1

Ser A160,Asn
A79,Phe A
128,Ala

A163,Asn A164

−19.3 80.2 μM 2.3
Phe A153,Lys

B304,Leu B317,Lys
B308

Toosendanin
(115060) −13.1 93.1 μM 2.0

His A132,Thr
B69,Gly

A75,GluA74,Asp
B63

−17.6 63.9 μM 0.9
Asn A164,Arg

A80,Asn
A79,His A10

−14.3 70.4 μM 2.9
Lys B308,Arg

A156,Ser A124,Trp
B301

Adenine bound to FUR protein with a binding score of −18.7 kcal/mol by creating
hydrogen bonds with the side chains of Asn A72,Phe A73,Gly A75,Glu A74, whereas
Mollugin is bound with a binding value of −16.2 kcal/mol by making hydrogen bonds
with Glu A74,Arg B70,Gly A76,Asn A72,Gly A75. Adenine and Mollugin bind strongly
to FUR active residues, followed by Xanthohumol C, Sakuranetin, and Toosendanin,
which have binding scores of −14.5 kcal/mol, −13.6 kcal/mol, and −13.1 kcal/mol,
respectively (Table 3). All ligands, excluding Sakuranetin, created strong hydrogen
bonds with the conserved Gly A75 (Figure 3).
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Figure 3. Interaction mechanisms and binding modes of novel FUR protein inhibitors. A 3D close
view into the binding mode of (A) Adenine, (C) Mollugin, (E) Xanthohumol C, (G) Sakuranetin,
and (I) Toosendanin. 2D interaction analysis of (B) Adenine, (D) Mollugin, (F) Xanthohumol C, (H)
Sakuranetin, and (J) Toosendanin.

Similarly, Adenine, Mollugin, Xanthohumol C, Sakuranetin, and Toosendanin have
been found to bind through significant hydrogen bonds in UDP protein, with binding
scores of −11.6 kcal/mol, −19.8 kcal/mol, −15.3 kcal/mol, −14.9 kcal/mol, and −17.6
kcal/mol, respectively. As illustrated in Table 3 and Figure 4, all of the active site’s
critical residues function as electron donors in the development of a H-bond network
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Figure 4. Interaction mechanisms and binding modes of novel UDP protein inhibitors. A 3D close
view into the binding mode of (A) Adenine, (C) Mollugin, (E) Xanthohumol C, (G) Sakuranetin,
and (I) Toosendanin. 2D interaction analysis of (B) Adenine, (D) Mollugin, (F) Xanthohumol C, (H)
Sakuranetin, and (J) Toosendanin.

Similarly, the top five inhibitors (Adenine, Mollugin, Xanthohumol C, Sakuranetin,
and Toosendanin) found to inhibit FUR and UDP proteins were also found to inhibit
lpxB protein. The binding energies of the five active compounds ranged from −14.3 to
−19.3 kcal/mol. Most compounds formed hydrogen bonds with Lys B304, Trp B301, and
Phe A153, indicating that these compounds may play a role in disease management.
Hydrogen interactions between the lpxB protein residues’ side chains and backbone
atoms stabilized the inhibitors spatially within the pocket (Figure 5).
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Figure 5. Interaction mechanisms and binding modes of novel lpxB protein inhibitors. A 3D close
view into the binding mode of (A) Adenine, (C) Mollugin, (E) Xanthohumol C, (G) Sakuranetin,
and (I) Toosendanin. 2D interaction analysis of (B) Adenine, (D) Mollugin, (F) Xanthohumol C, (H)
Sakuranetin, and (J) Toosendanin.

All of the top five inhibitors formed strong bonds with functionally and structurally
important interacting sites of the E. xiangfangensis proteins. The compounds identified in
this study may have additive or synergistic anti-E. xiangfangensis effects.

3.7. MD Simulation
To obtain a deeper comprehension of the dynamics of targets in the presence of

screened hits, a 100-ns molecular dynamic simulation was performed. Statistical
indicators, such as RMSD, RMSF, and radius of gyration were used to confirm the
structural stability of docked complexes. The root mean square deviations (RMSD) of
carbon alpha atoms were examined first.
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3.8. Root Mean Square Deviations (RMSD)
The RMSD value deviates from the intermolecular conformation of the initially

docked complex, indicating structural modifications [49]. A uniform RMSD plot reveals
increased intermolecular strength and system structural equilibrium as simulation time
progresses (Figure 6). During the first 50 ns of simulation time, the Adenine/FUR
complex exhibited stability. Following this, the complex exhibited a slight deviation of
0.5 Ao for the next 85 ns, after which it remained stable (Figure 6). The second complex
(Mollugin/UDP) showed minor deviations on its first jump and achieved stability, as
illustrated in green color in Figure 6. The third complex (Sakuranetin/IPXB) exhibited a
modest deviation of 0.3 Ao between 55 and 70 ns but otherwise remained stable, as
shown by the red line (Figure 6).

Figure 6. RMSD analysis of top docked complexes.

3.9. Root Mean Square Fluctuations (RMSF)
After that, the root mean square fluctuations (RMSF) of the simulated complexes

were computed. RMSF analysis facilitates the identification of flexible residues in
particular proteins and the comprehension of how these differences affect the stability of
complexes (Figure 7). Graphs of the Adenine/FUR complex indicate minor fluctuations
and showed overall stability up to residue number 450, while second Mollugin/UDP
complex and third Sakuranetin/IPXB complex showed a deviation between the residue
numbers 325 to 425, as indicated in red and green color, respectively, in Figure 7.
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Figure 7. RMSF analysis of top docked complexes.

3.10. Radius of Gyration (RoG)
During the simulation, Rg analysis was used to measure structural equilibrium and

protein density. The best Rg value for globular proteins should be low, but the best Rg
value for protein forms with more turns and loops could be much higher, as shown in
Figure 8. Rog values of the complexes are follows: Adenine/FUR complex (maximum,
95.45 Å; mean, 95.12 Å), Mollugin/UDP (maximum, 99.82 Å; mean, 95.12 Å), and
Sakuranetin/IPXB (maximum, 96.03 Å; mean, 94.25 Å). During the simulation period, no
notable reduction in compactness was detected in any of the complexes.

Figure 8. RoG analysis of top docked complexes.

3.11. Binding Free Energy Calculations
MMGBSA/MMPBSA methods were used to estimate binding free energies to learn

more about how well the complexes bind to E. xiangfangensis proteins. Stable complexes
are made because all the binding interactions are energetically good. In all complexes,
gas-phase energy predominates the system energy, with van der Waals playing a
significant part and electrostatic energy playing a minor role. The polar solvation energy
is shown to be unfavorable in binding, but the nonpolar energy appears to be
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advantageous in complex equilibration. Table 4 lists the complexes’ binding energies in
detail.

Table 4. Binding energies of best docked compounds.

Energy Component Adenine Mollugin Xanthohumol C Sakuranetin Toosendanin
Van der Waals −45.61 −34.06 −39.19 −42.12 −44.71
Electrostatic −41.95 −26.23 −37.69 −34.69 −33.96

Polar solvation 59.79 45.10 52.45 55.02 65.08
Nonpolar solvation −4.40 −6.90 −5.32 −4.49 −7.70

Net gas phase −78.23 −70.79 −61.12 −45.05 −59.45
Net solvation 60.28 55.17 46.41 61.77 45.31

Net complex energy −35.52 −50.18 −45.41 −42.21 −50.45

3.12. Drug Scan/ADMET
Based on Lipinski’s Rules of Five, Molinspiration predicted the drug-likeness of five

compounds. The selected candidates did not violate the “rule of five” and displayed
drug-like qualities in Table 5. The admetSAR server was used to examine the
pharmacokinetic properties of all of the candidate compounds, and the findings are
shown in Table 6.

Table 5. Drug-likeness properties of potential compounds.

Ligands
Molecular
Weight

Molecular
Formula

Hydrogen Bond
Donor

Hydrogen Bond
Acceptor

XLogP3
Heavy Atom

Count
Adenine 135.13 C5H5N5 2 4 −0.1 10
Mollugin 284.31 C17H16O4 1 4 4.1 21

xanthohumol C 352.4 C21H20O5 2 5 4.4 26
Sakuranetin 286.28 C16H14O5 2 5 2.7 21
Toosendanin 574.6 C30H38O11 3 10 0.7 41

Table 6. ADMET properties of the finest docked compounds.

Compounds Adenine Mollugin Xanthohumol C Sakuranetin Toosendanin
Absorption/Distribution

Blood–Brain Barrier No No No No No
Log S −410 −3.70 −4.12 −4.76 −4.94

GI Absorption High Low High High Low
Caco-2 permeability −5.18 −8.98 −6.71 −6.54 −7.72
Bioavailability Score 0.55 0.55 0.55 0.55 0.17

Metabolism
P-gp substrate No No Yes No No

CYP1A2 inhibitor No Yes No Yes Yes
CYP2C19 inhibitor No No Yes Yes Yes
CYP2C9 inhibitor No Yes No No Yes
CYP2D6 inhibitor No Yes Yes No No
CYP3A4 inhibitor No Yes Yes Yes Yes

Toxicity
AMES Toxicity Nill Nill Nill Nill Nill
Carcinogenicity None None None None None
Immunogenicity NT NT NT NT NT

Acute Oral Toxicity NT NT NT NT NT
NT: Nontoxic.
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4. Discussion
Enterobacter xiangfangensis is a new bacterial pathogen from the Enterobacter genus

that can become resistant to many antibiotics. To deal with this potentially fatal situation,
it is urgent that drugs to treat E. xiangfangensis should be developed. The identification
of therapeutic targets is a vital step in computer-aided drug design methods [51]. Recent
advances in computational biology and bioinformatics have produced a variety of
methods for in silico analysis and drug design, which has reduced the time and cost of
trial and error in the drug development process [7].

The democratization of sequencing has made it simpler to generate genomic
sequence data, so multiple or pan genome analyses are being used to identify key
therapeutic proteins in the bacterial species, making the therapeutic candidates universal.
This replaces the practice of using a single genome as a reference [52]. To obtain accurate
gene information and take into consideration genetic variation within species, a
pan-genomics-mediated technique was used in this study. The current study screened
for potential novel putative therapeutic targets in E. xiangfangensis using a pan genome
and subtractive genomics strategy. The potential therapeutic targets of several bacteria,
including Stenotrophomonas maltophilia [53], Mycobacterium tuberculosis [54], and
Streptococcus gallolyticus [55] have also been predicted using these methods. Although,
some additional analyses have been performed in our study that make it innovative
from other studies, such as prediction of molecular function and biological processes,
transmembrane helices, and druggability analysis.

In this study, six fully sequenced proteomes of E. xiangfangensis were downloaded
from NCBI and their pan genome analysis was performed. The core proteome, which
contains 21,720 proteins, was evaluated with CD-HIT to identify any duplication,
resulting in a total of 2611 nonredundant proteins. The analysis of essential proteins is
critical for the development of antipathogen drugs. Essential proteins are required for
the pathogen’s growth, survival, adaptability, and replication. The same function is
carried out by these proteins in several organisms, and they have evolutionary
relationships with other proteins. Pathogens may die if essential proteins are targeted.
Hence, 372 essential proteins were identified among nonredundant proteins. Shahid et al.
discovered 394 essential proteins in Shigella sonnei, Mehmood et al. discovered 208
essential proteins in Mycoplasma pneumoniae, and Rehman et al. discovered 302 essential
proteins in Streptococcus Pyogenes using this method [7,56,57]. These genes could be
related to humans. Thus, targeting such genes can disrupt human metabolism and be
fatal. Cross-reactivity and adverse events can be avoided by selecting nonhomologous
proteins that are not present in homo sapiens. So, 177 nonhomologous proteins were
screened to prevent such unfavorable conditions and toxicity. Virulent factors aid
bacteria in evading host defenses and contribute to pathogenicity, making them suitable
therapeutic targets. A total of 20 virulent proteins were identified from 177
nonhomologous proteins. Protein localization is closely related to biological function,
making it crucial to predict where proteins will be found within cells. Proteins can
typically be found in five major locations: the outer membrane, the plasma membrane,
the extracellular membrane, the periplasm, and the cytoplasm. Protein localization can
be used to assess whether a protein is a drug or vaccine target; cytoplasmic proteins are
therapeutic targets. Hence, three cytoplasmic proteins: ferric iron uptake transcriptional
regulator (FUR), UDP-2,3diacylglucosamine diphosphatase (UDP), and
lipid-A-disaccharide synthase (lpxB) were identified as drug targets on the basis of
several factors, including druggability, transmembrane helices, molecular weight,
stability, and molecular and biological function. Tertiary structures of target proteins
were predicted, assessed, and verified.

Molecular docking has become a lightning rod for validating the stability between
compounds and targets [58–60]. Molecular docking approach was employed to identify
the compounds with the best residue interactions with the target proteins. Out of 5000
docked molecules, 5 molecules that interact with all three proteins were chosen: Adenine,
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Mollugin, Xanthohumol C, Sakuranetin, and Toosendanin, based on a low score and a
high number of interacting residues. Drug probability and the molecular profile of these
five compounds were evaluated using “Lipinski’s Rule of Five”. They all followed
“Lipinski’s Rule of Five”.

Afterwards, the compounds were tested for human intestine absorption (HIA), BBB
penetration, and AMES monitoring. By analyzing the ADMET features, it is possible to
anticipate the toxicity level, behavior, and outcome of a drug candidate in the human
body [61]. A candidate’s likelihood of passing across the blood–brain barrier,
metabolism, subcellular localization, intestinal absorption, and—most notably—degree
of harm it can inflict on the body are all provided by this test [62]. These compounds
have no deleterious absorption effects., according to their ADMET profiles. Additionally,
when compared to the AMES test, none of the compounds displayed any toxicity or
mutagenic effects.

Hence, the novel drug targets identified in this study may be highly valuable in the
drug therapeutic field for designing new formulations of drug molecules and
discovering inhibitors to control E. xiangfangensis function, although further
experimental research is still required to validate these drug targets.

5. Conclusions
The novel bacteria Enterobacter xiangfangensis is susceptible to developing drug

resistance. Therefore, it is critical that drugs should be developed to treat E.
xiangfangensis. The current study used pan genome analysis to discover 21,720 key
proteins from six E. xiangfangensis strains using an in-silico technique. Twenty targets
were ultimately chosen after subtractive genomics and the identification of essential
genes. Utilizing 3D structural information and drug prioritization, three possible
therapeutic targets were prioritized among these proteins. Additionally, active
molecules were found using molecular docking analysis, and the top five active
molecules were picked based on the number of interactions, binding free energy, and
drug score. The discovered novel drug targets might have advanced to the early phases
of the drug design phase for the potential screening of new therapeutic candidates and
are, consequently, suggested as an antibacterial therapy. Drug target experimental
evaluation and subsequent drug molecule design against any target is a
time-demanding and expensive job. Hence, the findings of our study will substantially
aid the therapeutic development process against E. xiangfangensis. However,
computational analyses have limits; hence, more in vitro and in vivo investigations to
evaluate the inhibitory ability of chosen promising candidates against E. xiangfangensis
are necessary.
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