11 research outputs found

    An intelligent hot-desking model harnessing the power of occupancy sensing

    Get PDF
    Purpose The purpose of this paper is to develop a model to harness occupancy sensing in a commercial hot-desking environment. Hot-desking is a method of office resource management designed to reduce the real estate costs of professional practices. However, the shortcoming is often in the suitability and appropriateness of allocated work environments. The Internet of Things could produce new data sets in the office at a resolution, speed and validity of which that they could be factored into desk-allocation, distributing seats based on appropriate noise levels, stay length, equipment requirements, previous presence and proximity to others working on the same project, among many others. Design/methodology/approach The study utilises primary data from a commercial office environment in Central London (numerical building system data and semi-structured interviews) to feed a discrete events simulator. To test the hypothesis, the authors look at the potential for intelligent hot-desking to use “work type” data to improve the distribution of individuals in the office, increasing productivity through the creation of positive “work type environments” – where those working on specific tasks perform better when grouped with others doing the same task. The simulation runs for a typical work day, and the authors compare the intelligent hot-desking arrangement to a base case. Findings The study shows that sensor data can be used for desk allocation in a hot-desking environment utilising activity-based working, with results that outweigh the costs of occupancy detection. The authors are not only able to optimise desk utilisation based on quality occupancy data but also demonstrate how overall productivity increases as individuals are allocated desks of their preference as much as possible among other enabling optimisations that can be applied. Moreover, the authors explore how an increase in occupancy data collection in the private sector could have key advantages for the business as an organization and the city as a whole. Research limitations/implications The research explores only one possible incarnation of intelligent hot-desking, and the authors presume that all data have already been collected, and while not insurmountable, they do not discuss the technical or cultural difficulties to this end. Furthermore, final examination of the productivity benefit – because of the difficulty in defining and measuring the concept – is exploratory rather than definitive. This research suggests that not only human-centric smart building research should be prioritised over energy or space-based themes but also large-scale private sector collection of occupancy data may be imminent, and its potential should be examined. Practical implications Findings strongly suggest that the hot-desking may cost more in lost productivity than it gains in reduced rental costs and as such many commercial offices should revaluate the transition, particularly with a view to facilitate intelligent hot-desking. Companies should begin to think strategically about the wider benefits of collecting occupancy data across their real estate portfolio, rather than reviewing use cases in silos. Finally, cities should consider scenarios of widespread collection of occupancy data in the private sector, examining the value these data have to city systems such as transport, and how the city might procure it for these ends. Social implications This paper raises positive and negative social concerns. The value in occupancy data suggested herein, bringing with it the implication it should be collected en mass, has a noted concern that this brings privacy concerns. As such, policy and regulation should heed that current standards should be reviewed to ensure they are sufficient to protect those in offices from being unfairly discriminated, spied or exploited through occupancy data. However, the improved use of occupancy data improving workplaces could indeed make them more enjoyable places to work, and have the potential to become a staple in company’s corporate social responsibility policies. Originality/value This paper fulfils an identified need for better understanding the specific uses of occupancy data in the smart building mantra. Several sources suggest the current research focus on energy and rental costs is misguided when the holistic cost of an office is considered, and concepts related to staff – although less understood – may have an order of magnitude bigger impact. This research supports this hypothesis through the example of intelligent hot-desking. The value of this paper lies in redirecting industry and research towards the considering occupancy data in smart building uses cases including – but not limited to– intelligent hot-desking. </jats:sec

    A Game Theoretical Method for Cost-Benefit Analysis of Malware Dissemination Prevention

    Get PDF
    Copyright © Taylor & Francis Group, LLC. Literature in malware proliferation focuses on modeling and analyzing its spread dynamics. Epidemiology models, which are inspired by the characteristics of biological disease spread in human populations, have been used against this threat to analyze the way malware spreads in a network. This work presents a modified version of the commonly used epidemiology models Susceptible Infected Recovered (SIR) and Susceptible Infected Susceptible (SIS), which incorporates the ability to capture the relationships between nodes within a network, along with their effect on malware dissemination process. Drawing upon a model that illustrates the network’s behavior based on the attacker’s and the defender’s choices, we use game theory to compute optimal strategies for the defender to minimize the effect of malware spread, at the same time minimizing the security cost. We consider three defense mechanisms: patch, removal, and patch and removal, which correspond to the defender’s strategy and use probabilistically with a certain rate. The attacker chooses the type of attack according to its effectiveness and cost. Through the interaction between the two opponents we infer the optimal strategy for both players, known as Nash Equilibrium, evaluating the related payoffs. Hence, our model provides a cost-benefit risk management framework for managing malware spread in computer networks

    Managing Cyber Security Risks in Industrial Control Systems with Game Theory and Viable System Modelling

    No full text
    Cyber security risk management in Industrial Control Systems has been a challenging problem for both practitioners and the research community. Their proprietary nature along with the complexity of those systems renders traditional approaches rather insufficient and creating the need for the adoption of a holistic point of view. This paper draws upon the principles of the Viable System Model and Game Theory in order to present a novel systemic approach towards cyber security management in this field, taking into account the complex inter-dependencies and providing cost-efficient defence solutions

    Application of a Game Theoretic Approach in Smart Sensor Data Trustworthiness Problems

    No full text
    In this work we present an Intrusion Detection (ID) and an Intrusion Prevention (IP) model for Wireless Sensor Networks (WSNs). The attacker’s goal is to compromise the deployment by causing nodes to report faulty sensory information. The defender, who is the WSN’s operator, aims to detect the presence of faulty sensor measurements (ID) and to subsequently recover compromised nodes (IP). In order to address the conflicting interests involved, we adopt a Game Theoretic approach that takes into consideration the strategies of both players and we attempt to identify the presence of Nash Equilibria in the two games. The results are then verified in two simulation contexts: Firstly, we evaluate the model in a middleware-based WSN which uses clustering over a bespoke network stack. Subsequently, we test the model in a simulated IPv6-based sensor deployment. According to the findings, the results of both simulation models confirm the results of the theoretic one
    corecore