1,110 research outputs found

    Energy harvesting from earthquake for vibration-powered wireless sensors

    Get PDF
    Wireless sensor networks can facilitate the acquisition of useful data for the assessment and retrofitting of existing structures and infrastructures. In this perspective, recent studies have presented numerical and experimental results about self-powered wireless nodes for structural monitoring applications in the event of earthquake, wherein the energy is scavenged from seismic accelerations. A general computational approach for the analysis and design of energy harvesters under seismic loading, however, has not yet been presented. Therefore, this paper proposes a rational method that relies on the random vibrations theory for the electromechanical analysis of piezoelectric energy harvesters under seismic ground motion. In doing so, the ground acceleration is simulated by means of the Clough-Penzien filter. The considered piezoelectric harvester is a cantilever bimorph modeled as Euler-Bernoulli beam with concentrated mass at the free-end, and its global behavior is approximated by the dynamic response of the fundamental vibration mode only (which is tuned with the dominant frequency of the site soil). Once the Lyapunov equation of the coupled electromechanical problem has been formulated, mean and standard deviation of the generated electric energy are calculated. Numerical results for a cantilever bimorph which piezoelectric layers made of electrospun PVDF nanofibers are discussed in order to understand issues and perspectives about the use of wireless sensor nodes powered by earthquakes. A smart monitoring strategy for the experimental assessment of structures in areas struck by seismic events is finally illustrated

    Transfusion thresholds and beyond

    Get PDF
    Comment on Liberal transfusion strategy improves survival in perioperative but not in critically ill patients. A meta-analysis of randomised trials. [Br J Anaesth. 2015

    Chloride Penetration in Circular Concrete Columns

    Get PDF
    Most of the diffusion models of chloride ions in reinforced concrete (RC) elements proposed in literature are related to an isotropic homogeneous semi-infinite medium. This assumption reduces the mathematical complexity, but it is correct only for plane RC elements. This work proposes a comparison between the diffusion model of chloride ions in RC circular columns and in RC slab elements. The durability of RC cylindric elements estimated with the circular model instead of the plane model is shown to be shorter. Finally, a guideline is formulated to properly use the standard and more simple plane model instead of the circular one to estimate the time to corrosion initiation of cylindrical RC elements

    Optimal preliminary design of variable section beams criterion

    Get PDF
    The present paper discusses about optimal shape solution for a non-prismatic planar beam. The proposed model is based on the standard Timoshenko kinematics hypothesis (i.e., planar cross-section remains planar in consequence of a deformation, but it is able to rotate with respect to the beam center-line). The analytical solution for this type of beam is thus used to obtain deformations and stresses of the beam, under different constraints, when load is assumed as the sum of a generic external variable vertical one and the self-weight. The solution is obtained by numerical integration of the beam equation and constraints are posed both on deflection and maximum stress under the hypothesis of an ideal material. The section variability is, thus, described assuming a rectangular cross section with constant base and variable height which can be described in general with a trigonometric series. Other types of empty functions could also be analyzed in order to find the best strategy to get the optimal solution. Optimization is thus performed by minimizing the beam volume considering the effects of non-prismatic geometry on the beam behavior. Finally, several analytical and numerical solutions are compared with results existing in literature, evaluating the solutions’ sensibility to some key parameters like beam span, material density, maximum allowable stress and load distribution. In conclusion, the study finds a critical threshold in terms of emptying function beyond which it is not possible to neglect the arch effect and the curvature of the actual axis for every different case study described in this work. In order to achieve this goal, the relevance of beam span, emptying function level and maximum allowable stress are investigated

    Cost and EAL based optimization for seismic reinforcement of RC structures

    Get PDF
    In this paper, a new genetic algorithm-based framework aimed at efficiently design multiple seismic retrofitting interventions is proposed. The algorithm focuses on the minimization of retrofitting intervention costs of reinforced concrete (RC) frame structures. The feasibility of each tentative solution is assessed by considering in an indirect way the expected annual loss (EAL), this evaluation is performed by referring to different limit states whose repairing costs are expressed as a percentage of reconstruction costs and evaluating the respective mean annual frequency of exceedance. As the EAL takes into account the overall structural performances, to involves both serviceability and ultimate limit states, two different seismic retrofitting techniques are considered. In particular, FRP wrapping of columns is employed to increase the ductility of RC elements managing life safety and collapse limit state demands. On the other hand, steel bracings are used to increase the global stiffness of the structure and mainly increase operational and damage limit states performances. The optimization procedure is carried out by the novel genetic algorithm-based framework developed in Matlab® that is connected to a 3D RC frame fiber-section model implemented in OpenSees. For both the retrofitting systems, the algorithm provides their position within the structure (topological optimization) and their sizing. Results will show that seismic retrofitting can be effectively designed to increase the overall structural safety by efficaciously optimizing the intervention costs

    Shell-supported footbridges

    Get PDF
    Architects and engineers have been always attracted by concrete shell structures due to their high efficiency and plastic shapes. In this paper the possibility to use concrete shells to support footbridges is explored. Starting from Musmeci's fundamental research andwork in shell bridge design, the use of numerical formfinding methods is analysed. The form-finding of a shellsupported footbridge shaped following Musmeci's work is first introduced. Coupling Musmeci's and Nervi's experiences, an easy construction method using a stay-inplace ferrocement formwork is proposed. Moreover, the advantage of inserting holes in the shell through topology optimization to remove less exploited concrete has been considered. Curved shell-supported footbridges have been also studied, and the possibility of supporting the deck with the shell top edge, that is along a single curve only, has been investigated. The form-finding of curved shell-supported footbridges has been performed using a Particle-Spring System and Thrust Network Analysis. Finally, the form-finding of curved shell-supported footbridges subjected to both vertical and horizontal forces (i.e. earthquake action) has been implemented

    A new genetic algorithm framework based on Expected Annual Loss for optimizing seismic retrofitting in reinforced concrete frame structures

    Get PDF
    The design of seismic retrofitting for existing reinforced concrete frame structures concerns the determination of the position and the arrangement of reinforcements. Currently, this design practice is mainly based on trial-and-error attempts and engineers' experience, without a formal implementation of cost/performance optimization. Though, the implementation of this intervention is associated with significant costs, noticeable downtimes, and elevated invasiveness. This paper presents a new genetic algorithm-based framework for the optimization of two different retrofitting techniques (FRP column wrapping and concentric steel braces) that aims at minimizing costs considering indirectly the lessening of expected annual values. The feasibility of each tentative solution is controlled by the outcomes of static pushover analyses in the framework of the N2 method, achieved by a 3D fiber-section model implemented in OpenSees. Application of the framework in a realistic case study structure will show that the sustainability of retrofitting intervention is achievable by employing artificial intelligence aided structural design

    A novel genetic algorithm-based optimization framework for minimizing seismic retrofitting interventions costs in existing masonry structures

    Get PDF
    The pressing necessity of enhancing the seismic safety of existing masonry structures in earthquake-prone areas has led, in recent years, the research to propose a vast amount of new retrofitting techniques. However, retrofitting interventions are generally associated with important costs. Currently, there are no formal methods to optimize these interventions thus, their design is entrusted only to engineers' intuition. This paper presents a novel optimization framework aimed at the minimization of seismic retrofitting-related costs by an optimal placement (topological optimization) of reinforced plasters in masonry structures. In the proposed framework a 3D equivalent masonry model implemented in OpenSees is handled by a genetic algorithm developed in MATLAB® routine that iterates reinforcement configurations to match the optimal solution. The feasibility of each solution is controlled by the outcomes of a seismic static equivalent analysis by controlling the safety check of masonry walls with respect to both flexural and shear collapse. It is also shown, through a case study, that the proposed approach is efficient to pinpoint optimal retrofitting configurations, significantly reducing invasiveness and downtime
    • …
    corecore