
16 July 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Optimal preliminary design of variable section beams criterion / Cucuzza, R.; Rosso, M. M.; Marano, G. C.. - In: SN
APPLIED SCIENCES. - ISSN 2523-3971. - 3:8(2021). [10.1007/s42452-021-04702-5]

Original

Optimal preliminary design of variable section beams criterion

Publisher:

Published
DOI:10.1007/s42452-021-04702-5

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2923335 since: 2021-09-13T12:46:40Z

Springer Nature



Vol.:(0123456789)

SN Applied Sciences           (2021) 3:745  | https://doi.org/10.1007/s42452-021-04702-5

Research Article

Optimal preliminary design of variable section beams criterion

Raffaele Cucuzza1  · Marco Martino Rosso1  · Giuseppe Carlo Marano1 

Received: 1 April 2021 / Accepted: 18 June 2021

© The Author(s) 2021  OPEN

Abstract
The present paper discusses about optimal shape solution for a non-prismatic planar beam. The proposed model is 
based on the standard Timoshenko kinematics hypothesis (i.e., planar cross-section remains planar in consequence of 
a deformation, but it is able to rotate with respect to the beam center-line). The analytical solution for this type of beam 
is thus used to obtain deformations and stresses of the beam, under different constraints, when load is assumed as the 
sum of a generic external variable vertical one and the self-weight. The solution is obtained by numerical integration of 
the beam equation and constraints are posed both on deflection and maximum stress under the hypothesis of an ideal 
material. The section variability is, thus, described assuming a rectangular cross section with constant base and variable 
height which can be described in general with a trigonometric series. Other types of empty functions could also be 
analyzed in order to find the best strategy to get the optimal solution. Optimization is thus performed by minimizing 
the beam volume considering the effects of non-prismatic geometry on the beam behavior. Finally, several analytical 
and numerical solutions are compared with results existing in literature, evaluating the solutions’ sensibility to some key 
parameters like beam span, material density, maximum allowable stress and load distribution. In conclusion, the study 
finds a critical threshold in terms of emptying function beyond which it is not possible to neglect the arch effect and 
the curvature of the actual axis for every different case study described in this work. In order to achieve this goal, the 
relevance of beam span, emptying function level and maximum allowable stress are investigated.

Keywords Non-prismatic beam · Arch effect · Structural optimization · Genetic algorithm

1 Introduction

The adoption of variable section beams in the Civil Engi-
neering field is really widespread. One can refer e.g. to the 
bridge field where it is useful to adopt a non-prismatic 
beam in an optical of optimization of the use of material. 
As a matter of fact, it is convenient to increase the cross 
section in the area where the bending moment demand is 
greater [8]. The non-prismatic beams were always adopted 
in the Architectural field, not only as a result of an optimi-
zation process, but rather in order to find aesthetic require-
ments and establish a strong relationship among the 

form, the structural requirements and also looking to the 
harmony with the place in which the structure is located. 
In [11], the author studied and critically analyzed the his-
torical aspects of the different type of optimization pro-
cedures in form findings for variable section beams but, 
nowadays, very complex geometry can be easily treated 
in a parametric way with valuable technologies and pow-
erful software such as Grasshopper as showed in [15]. The 
adoption of variable cross section beam involves also the 
knowledge of the mechanical behaviour of all available 
structural materials, e.g. in many applications tapered 
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beam are mainly adopted and if they are for example in 
timber one can refer for instance to [9].

In the classical study of the beam, it is assumed to be 
valid the Navier hypothesis which states that the sections 
remain planar also in the deformed configuration. The 
classical Euler-Bernoulli beam is based on the hypothesis 
to neglect the shear deformation contribution whereas 
the Timoshenko beam takes into account it, resulting in a 
more complete theory [5, 14]. In literature, many articles 
analyze the problem of variable cross section beam. For 
example in [2, 3, 14], authors analyze the general compat-
ibility and equilibrium of non-prismatic beams proposing 
an approximated Timoshenko-like model solving a system 
of coupled ODE. Many other approaches were developed 
in literature, e.g. to treat also curved beams one can refer 
for instance to [6] for the isogeometric analysis formulated 
by Hughes to analyze with FEM curved beam based on 
the adoption of B-spline interpolation. A simpler, and usu-
ally adopted approach, is the finite differences methods 
which allow to take into account non-homogeneous and 
non-prismatic beam approximating the derivative of the 
functions on a discretized mesh of the structure such as 
in [1, 16].

In this preliminary study, the main idea is to optimize 
the lateral shape of a prismatic beam composed of an ideal 
material which assumes a non-prismatic behavior because 
of the intervention of an emptying function which defines 
a new height profile. Ideally neglecting the conventional 
arch beam behaviour, in this study a sort of “dog-bone” 
beam shape is analyzed in which the barycentric beam 
axis remains always straight. Another study conducted on 
a variable section beam with the aforementioned geom-
etry is also presented in [7] where a solution with a power 
series method is presented. In particular, the objectives of 
this study are both to optimize the shape minimizing the 
self-weight and, at the same time, to identify the range 
of validity of this simplified approach neglecting the con-
ventional arch effect. For this reason, a final comparison is 
made between the dog-bone beams deployed in Matlab 
with the optimal real arch geometry beam modelled with 
FEM using the professional software Midas Gen. Substan-
tially, the main aim of this last comparisons is to demon-
strate that for different emptying values, regardless the 
span length, the arch effect produced by the curvature of 
the actual axis in the optimal shape profile it is negligible 
and it is also possible to adopt this simplified dog-bone 
approach for moderate relative emptying values.

The meta-heuristic approaches represent nowadays 
very interesting methods in structural optimization fields, 
besides the advantage of no prior requirements on differ-
entiability conditions of the objective function (OF) and 
the constraints [13]. In particular, the genetic algorithms 
(GA) belong to the branch of evolutionary algorithms 

which are based on Darwin’s theory of survival of the 
fittest. This algorithm was originally proposed by John 
Holland in 1975 at the University of Michigan, and it was 
extended later mainly by his student David E. Goldberg 
[10]. It takes inspiration from a crude imitation of what 
happens in Nature in which species whose individuals are 
better evolve to the next generation (individuals with the 
better fitness in term of OF) and the core is based directly 
on the genetic mechanism of transmission of the parents’ 
features to offspring chromosomes adopting specific 
mathematical operators: crossover operator, mutation 
operator and selection operator. Due to the GA random 
nature, unfortunately, there are no mathematical proofs 
of its convergence, but numerically studies demonstrated 
that they are able to succeed also dealing with highly non-
linear, non-convex and discontinuous domains. Further-
more, since the GA require only the OF evaluation and not 
require any information about the gradient, its computa-
tional effort will be lower compared with mathematical 
programming techniques such as NLP methods [12]. For 
further readings about the GA and in general to meta-
heuristic algorithms, one can refer to e.g. [10].

In Sect. 2 the analytical model for the non-prismatic 
beam is exposed also with an insight in a dimensionless 
form of the differential problem. Subsequently, in the 
Sect.  3 the numerical adopted approach is discussed. 
Moreover, in Sect.  4, a comparison between different 
emptying imposed values and a comparison between 
optimal Matlab solutions with the FEM validation models 
are discussed. Finally, in at the end of the Sect. 4 and then 
in Conclusions, a comparison between some features for 
different emptying and span length imposed value are 
investigated and discussed in order to understand if the 
dog-bone beam model exhibits a good behaviour in com-
parison with respect to the reference FEM model and if 
this solution can be assumed as a preliminary criteria of 
preliminary design.

2  Analytical beam model

In order to solve the problem of variable section beam one 
has to refer to the equation of elastic line for non-prismatic 
beam as stated in [8], which it can be written in general as 
the following form:

where x is the longitudinal coordinate of the beam axis, y 
is the beam deflection, E is the elastic modulus, J(x) repre-
sents the moment of inertia variable along the x coordi-
nate and q(x) is the distributed load which comprises both 

(1)
d2

dx2

[
EJ(x)

d2

dx2
y(x)

]
= q(x),
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self-weight and live load applied on the non-prismatic 
beam element. The Eq. (1), once written in abbreviated 
form and suppressing the dependencies from x, simpli-
fies as:

By developing the second order derivative, we obtain:

Finally, deriving one more time and rearranging the equa-
tion’s terms from the maximum order derivative to the 
minimum one, it yields to:

where, under the assumption to adopt a rectangular cross 
section shape with constant base b and height h(x) vari-
able along the x coordinate, the inertia terms becomes:

are respectively the Moment of Inertia and its high order 
derivative, in which the first and second order derivatives 
of the cross sectional height, h�(x) and h��(x) , appears.

It has now introduced the beam section depth func-
tion �(x) , which varies with depth beam section

where h0 represents the initial beam section depth. At this 
point, starting from a prismatic beam, one have to con-
sider now to apply an emptying function from the bottom 
side which define a new height profile but maintaining 
h0 at the fixed joints. Therefore �(x) identifies a emptying 
function which is the sum of many harmonic as the fol-
lowing one:

(2)
d2

dx2
[Jy��] =

q(x)

E
.

(3)
d

dx
[J�y�� + Jy���] =

q(x)

E
.

(4)yIV (x)J(x) + 2y���(x)J�(x) + y��(x)J��(x) =
q(x)

E

(5)J(x) =
1

12
bh3(x),

(6)J�(x) =
1

4
bh2(x)h�(x),

(7)J��(x) =
1

4
b[2h(x)(h�(x))2 + h2(x)h��(x)],

(8)h(x) = h0 − �(x)

A0 sin

(
�

L
x
)
,

in which the A0 term denotes the max amplitude of the 
emptying function and L denote the beam span lenght. 
Therefore, the �(x) function can be written as the sum of 
N harmonics:

The amplitude coefficients Ai directly represent the maxi-
mum emptying value for each term of the sum when the 
trigonometric function is equal to unity for a certain value 
of x and, therefore, it is also possible to denote them as 
�hi . The following relationships between the emptying 
function �(x) and the beam section depth function h(x) 
are derived:

Considering the new equation of the beam section depth 
function and its higher order derivative, it is possible to 
obtain

Substituting the (5), (6), (7), (11), (12), (13) in the (4) it is 
possible to obtain the following forth order differential 
problem:

Focusing now on the emptying function which follow a 
generic trigonometric series as proposed in (9), in order to 
obtain the explicit formulas for the inertia and its deriva-
tive, it becomes

(9)

�(x) =

N∑
i=1

Ai sin

(
i
2

L

�

2
x
)
, where i is an odd natural number.

(10)h(x) = h0 −

N∑
i=1

Ai sin

(
i
�

L
x
)
.

(11)h(x) = h0 − �(x),

(12)h�(x) = −� �(x),

(13)h��(x) = −� ��(x).

(14)

yIV (x)J(x) + 2y���(x)J�(x) + y��(x)J��(x) =
q(x)

E

J(x) =
1

12
b[h0 − �(x)]3,

J�(x) =
1

4
b[h0 − �(x)]2(−� �(x)),

J��(x) =
1

4
b[2(h0 − �(x))((−� �(x))2 + (h0 − �(x))2(−� ��(x))],
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The term q(x) take into account two contributions: the 
dead load per unit length which is the product of the 
material density and the cross section of the beam S(x)� 
and the variable load q0 assumed to be constant with the 
length which represents the applied live load. This fact 
leads the forth order differential Eq. (4) to assume the fol-
lowing form

In order to numerically solve the forth order differential 
equation, it is necessary to set the equation as a system 
of four equation of the first order introducing the vector z

Considering the first derivative of z� = f (z, x) , the vector f  
can be written as below

(15)

J(x) =
1

12
b

�
h0 −

N�
i=1

Ai sin

�
i
�

L
x
��3

,

J�(x) =
1

4
b

�
h0 −

N�
i=1

Ai sin

�
i
�

L
x
��2�

−

N�
i=1

Aii
�

L
cos

�
i
�

L
x
��

,

J��(x) =
1

4
b

⎧⎪⎨⎪⎩
2

�
h0 −

N�
i=1

Ai sin

�
i
�

L
x
���

−

N�
i=1

Aii
�

L
cos

�
i
�

L
x
��2

+

+

�
h0 −

N�
i=1

Ai sin

�
i
�

L
x
��2� N�

i=1

Aii
2 �

2

L2
sin

�
i
�

L
x
��⎫

⎪⎬⎪⎭
,

(16)yIV (x)J(x) + 2y���(x)J�(x) + y��(x)J��(x) =
q0 + S(x)�

E
.

(17)z =

⎡⎢⎢⎢⎣

y(x)

y�(x)

y��(x)

y���(x)

⎤⎥⎥⎥⎦

(18)f =

⎡
⎢⎢⎢⎢⎣

y�(x)

y��(x)

y���(x)

−2
J�(x)

J(x)
y���(x) −

J��(x)

J(x)
y��(x) +

q0+S(x)�

EJ(x)

⎤⎥⎥⎥⎥⎦

In the following section it is exposed another method to 
solve numerically the fourth order equation as suggested 
in [4].

In the hypothesis of a beam section fully defined by the 
Equation J(x) = �2S2(x) and deriving two times the ratios 
J�∕J and J��∕J , with the aim of parameterize the system 
problem,as we show follow:

Finally, it is possible to obtain

which can be solved for the only parameter h(x), making 
explicit the parameter J(x):

3  Optimal design criterion

The mathematical model exposed in the previous section 
has been implemented in a Matlab script. In order to solve 
the optimization problem the algorithm adopted is the 
Genetic Algorithm (GA) with the native function of Mat-
lab. The analysis were conducted on a single span beam 
x ∈ [0, L] with fixed ends which is characterized with a 
rectangular cross section with constant base b and vari-
able height h ∈ (0, h0) along the element. Formalizing the 
optimization problem, the design vector is represented by 
the maximum amplitude of the emptying trigonometric 
functions i.e. the design parameter is only one if one con-
siders to adopt only a sine function as the total emptying 
function. As a matter of fact, for the imposed boundary 
condition on this beam, the two cases that are of a valu-
able technical interest for the form finding are the one sine 

J�(x)

J(x)
= 3

h�

h
,

J��(x)

J(x)
= 3

(
2

(
h�

h

)2

+
h��

h

)
.

(19)

f =

⎡
⎢⎢⎢⎢⎢⎣

y�(x)

y��(x)

y���(x)

−6
h�(x)

h(x)
y���(x) − 3

��
h�(x)

h(x)

�2

+
h��(x)

h(x)

�
y��(x) +

�
q0

EJ(x)
+

�

E

1

�
√
J(x)

�

⎤⎥⎥⎥⎥⎥⎦

(20)f =

⎡
⎢⎢⎢⎢⎢⎣

y�(x)

y��(x)

y���(x)

−6
h�(x)

h(x)
y���(x) − 3

��
h�(x)

h(x)

�2

+
h��(x)

h(x)

�
y��(x) +

�
q0

E

12

b
(h(x))−3 +

�

E�

�
12

b
(h(x))−3∕2

�

⎤⎥⎥⎥⎥⎥⎦
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emptying function ( N = 1 lobe) and the two sine emptying 
function ( N = 3 lobes), as also depicted in Fig. 1.

In order to reduce the material consumption and then 
the related costs, the OF to be minimized is equal to the 
total weight of the beam Wtot = � ⋅ V  . Dropping the mate-
rial weight density which is assumed to be constant, the 
OF only becomes the total volume V which, for a general 
trigonometric series, can be calculated as in the following

The optimization problem require to solve the structural 
analysis performed with the presented analytical model 
and the search space is further reduced due to the pres-
ence of structural constraints to be satisfied in terms of 
maximum allowable deflection in midspan, convention-
ally assumed as �lim = L∕250 , and in terms of maximum 
allowable stress at the extreme fibers of each cross section 
evaluated with the Von Mises ideal stress criterion

The �id is assumed to be the yielding stress for an ideal 
material which exhibit the same behaviour both in tension 
and in compression. Setting z as the vertical local axis for 
each rectangular cross section, the elastic normal tension 
is acting with its maximum intensity at the outer fibers of 
the cross section accordingly to the Navier’s formula,

(21)h(x) = h0 − �h1 sin
(
�

L
x
)

(1 lobe),

(22)

h(x) = h0 −
[
�h1 sin

(
�

L
x
)
+ �h3 sin

(
3
�

L
x
)]

(3 lobes).

(23)

V = b

[
∫

L

0

h(x)dx

]
= b

[
∫

L

0

h0dx − ∫
L

0

N∑
i

�hi sin

(
i
�

L
x

)]
=

= b

[
h0L −

N∑
i

�hi ∫
L

0

sin

(
i
�

L
x

)]
=

= bL

[
h0 −

N∑
i

�hi
2

i�

]

(24)
√
�2(z) + 3�2(z) ≤ �id .

whereas the tangential stress reach the maximum inten-
sity in the center of each cross section accordingly the 
Jourawsky’s parabolic profile,

The analytical model exposed in the previous section 
is numerically solved with Matlab adopting the internal 
solver bvp4c. As suggested by [4], the general fourth 
order Eq. in (4) can be considered equivalent to the fol-
lowing system of four first order ordinary differential 
equations

which can be rewritten in vectorial notation as

s e t t i n g  y1 = y(x), y2 = �(x), y3 = M(x) and y4 = V (x)  , 
where � is the rotation of the cross section. In this way, 
the variability of the cross section is taken implicitly into 
account only by J(x) and, due to the fact that all the equa-
tion are coupled, this is taken into account in the entire 
system avoiding to explicitly solve the fourth order equa-
tion depending by the derivative of the inertia. Moreover, 
in this way the solutions of the system directly represent 
shear, moment, rotation and deflection curves.

At the end of this section, it is necessary to stress 
that in this preliminary study, all the equations before 

(25)�

(
z = +

h

2
or z = −

h

2

)
=

MEd

Wel

=
6

bh2
MEd ,

(26)�(z = 0) =
VEdS

∗
x
(z = 0)

Ixb
=

3

2

VEd

bh
.

(27)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dV

dx
= −q(x),

dM

dx
= V (x),

d�

dx
= −

M(x)

EJ(x)
,

dy

dx
= −�(x),

(28)y�(x) = f (x, y),

Fig. 1  Optimal emptied 
expected shape for a double 
fixed beam adopting an empty 
function with a one single sine 
(left) and two sine (right)
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exposed are valid for a variable section beam with a 
straight axis. In reality, the beam model showed in Fig. 1 
has a curvilinear axis which involved also the arch effect 
and it is necessary also to take into account the axial 
force produced by the pre-existing curvature of the 
system. Therefore, in this preliminary study, the results 
are referred to a ideally straight axis beam with variable 
cross section similarly to a dog-bone shape beam, as 
shown in Fig. 2.

In the next section, some numerical examples and the 
respectively main results are presented and some com-
parisons are discussed on the validity of approximating 
the real system to a sort of dog-bone variable section 
beam.

4  Numerical examples

In order to make some first comparisons, an ideal beam is 
analyzed with different emptying ratios and making a com-
parison with a full-beam without any emptying ratio. The 
analysis are conducted assuming a fixed ends cross section 
with b = 0.50 m and h = 1.5 m and taking into account 
the material parameters of an ideal concrete C20/25 
( E = 29962 MPa ). The span length is set to L = 20 m and 
three different emptying ratio are chosen for analyzing the 
one lobe emptying function with 1∕4, 1∕2 and 3∕4 of h as 
depicted in Fig. 3. Taking into account a uniformly distrib-
uted live load of q = 10 kN∕m and both considering the 
self-weight assuming � = 25 kN∕m3 , the results in terms 

of deflections, rotations, bending moments and shear dia-
grams are shown in Fig. 4.

As it is possible to notice, increasing the emptying ratio 
the beam becomes more compliant and the deformation 
parameters such as deflection and rotation increase. On 
the contrary, the shear from a linear function along the 
beam becomes curvilinear accordingly to the variation of 
the self-weight along the beam and the vertical reactions 
decreases because of the diminishing of the self-weight. 
The bending moment follows substantially the flexural 
rigidity along the beam. In fact, from the full-beam case 
where one can find the usual values of qL2∕12 and qL2∕24 
at the fixed end and in midspan respectively, the bending 
moment tends to get a higher decrease in the midspan 
and a slight decrease at the fixed ends. This justify the aim 
of the optimization process to try to find a better material 
distribution along the beam element in order to reduce 
the actions but paying attention also to the deformability 
requirements.

Another comparison it is made with a two lobes empty-
ing function. This time it is necessary to choose two values 
of the amplitude of the sine functions which are combined 
together, paying particular attention to not choose a com-
bination which violates the physical domain in any point 
( h ∈ [0, 1.5] m ). The amplitude for the first sine are set as 
before, whilst for the second sine function they are chosen 
as 1∕8, 3∕16 and 1∕4 of h and the resulting beam profiles 
are shown in Fig. 5. As before, the value of the actions 
decrease with the increasing of the emptying ratio and 

Fig. 2  Numerical adopted 
model neglecting the pre-
existing curvature of the axis of 
the emptied beam for a double 
fixed beam using an empty 
function with a one single sine 
(left) and two sine (right)

Fig. 3  Illustration of the ideal 
geometry of a non-prismatic 
beam with a trigonometric 
emptying function with one 
lobe. This ideal model, is in 
reality calculated with a dog-
bone beam model as previ-
ously exposed
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the bending moment this time looks like more regular 
because the decrease in midspan is lower than before. In 
fact, the two lobes emptying function try to remove mate-
rial where the bending moment diagram of a full-beam 
approaches to zero. This results in a bending moment 
distribution which approximately reminds the bending 
moment diagram of a full fixed beam. Focusing on the 
compliance, this time the beam seems more compliant 
in particular there are two peaks in the rotation diagram 
and the deflection diagram is less sharp than before, as 
depicted in Fig. 6. 

As before mentioned, the purpose of this work is to 
investigate not only the ideal behavior of a dog-bone 
beam but especially appreciate what are the parameters 

or response ranges above which these particular modeling 
techniques deviate from the desired arch beam ones.

To achieve this goal, the behavior of a dog-bone beam 
for three different emptying functions, obtained with GA 
optimization processes, and three different imposed 
length values is compared with an arch beam FEM model 
as depicted in Tables 2 and 3.

Different intermediate emptying values are chosen 
because they depend on the slenderness of the beam. As 
we expected, the maximum emptying ratios for beams 
with length of 20 and 30 m reach respectively 1 and 0.76 
m whilst the same maximum emptying ratio is achieved 
to 0.49 m for 40 m beam span as described in Table 1. 
In order to have the same intermediate values of the 
emptying functions, new intermediate emptying ratios 

Fig. 4  Comparison among the 
internal actions and compli-
ance parameters (deflection 
and rotation) with the different 
imposed maximum emptying 
values defined in Fig. 3 on a 
one lobe dog-bone beam

Fig. 5  Illustration of the ideal 
geometry of a non-prismatic 
beam with a trigonometric 
emptying function with three 
lobes. This ideal model, is in 
reality calculated with a dog-
bone beam model as previ-
ously exposed
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should have been defined based on the minimum emp-
tying value obtained for each case studies. This strategy 
would lead to discarding larger emptying percentages 
obtained by slenderness beam.

In this work, the bending moment at fixed joints and 
midspan and deflection are the only parameters used to 
realize these comparisons because they represent the fea-
tures more sensitive to the different levels of emptying 
ratio.

It is worth noting that the deviation between two solu-
tions, for both the emptying function studied, is negligible 
when a constant rectangular cross section is defined, or in 
other words, when the emptying ratio is zero. For increas-
ing emptying values imposed, the deviation between a ref-
erence FEM modeling, which takes into account the arch 
effect, and the dog-bone Matlab model with a straight axis 
grows. In the one lobe emptying function case study, the 
Matlab solution bending moment and deflection tends 
to be overestimated compared to the more accurate 
FEM solution. If the maximum emptying ratio would be 
achieved in a dog-bone beam with 20 m of length, the 
fixed joint bending moment would have been larger than 
50% respect the same one obtained with FEM modeling, 
whereas the midspan bending moment would have even 
grown to 2 (as one can see in Table 2).

Generally, the beam with 40 m length tends not to be 
affected by the model approximation neither even when 
investigated emptying levels reach approximately 60% 
of the total height. In this case, the error with respect to 

the reference FEM solution is about 20%. The one lobe 
emptying function scenario is confirmed by observing 
the optimization results for the case of three lobes emp-
tying function. Referring now to the bending moment at 
fixed joint, the obtained trends are similar to the case of 
the one lobe emptying function with the exception of the 
beam with 20 m length. This latter case shows a devia-
tion from the correct solution at fixed joints of about 10% 
whilst it is negligible at mid span. Although in the one lobe 
emptying function case the 20 m beam exhibits the worst 
deviation with respect to the FEM results, in the three 
lobes emptying function case it, now, represents the well-
behaved solution as illustrated in Fig. 9. As a matter of fact, 
it reaches the greatest emptying ratio but also exhibits the 
minimum error with respect to the reference FEM solution.

Moreover, for case study of a beam with a 20 m span 
length with three lobes emptying function, both displace-
ment and even more for the bending moment at midspan 
result underestimated by the dog-bone model. In this case, 
as depicted in Fig. 8, the deviation from the desired arch 
beam is due to static considerations about normal stresses 
inclination and emptying function shape: bending moment 
induced by normal stresses tend to increase the total bend-
ing moment at midspan rather than decrease it as in the 
case of one lobe emptying function. The dog-bone beam 
model, which represents a variable cross section beam with 
a straight axis, does not take into account this contribution 
and this explains its underestimated features.

Fig. 6  Comparison among the 
internal actions and compli-
ance parameters (deflection 
and rotation) with the different 
imposed maximum emptying 
values defined in Fig. 5 on a 
three lobes dog-bone beam
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Considering the 40 m span length case with three lobes, 
the obtained optimal result shows negligible deviations 
from the more accurate FEM solution regardless of the emp-
tying ratio due to the little optimal emptying obtained value, 
as illustrated in Fig. 9.

In conclusion, as illustrated in Fig. 7, it is worth noting 
that the three lobes emptying function, with the increase of 
slenderness, achieves the emptying value much lower than 
the ones obtained using a one lobe emptying function. As a 
matter of fact, in the three lobes case with 40 m length, the 
maximum emptying percentage stopped on about 20% of 
the total beam height.

5  Conclusions

In this work, the performances of two different emptying 
functions (one lobe and three lobes sine functions) are 
tested in order to evaluate which strategy gives the best 
results in the proposed preliminary simplified optimiza-
tion criteria. This study also aims to investigate the actual 
threshold values beyond which a more complex mode-
ling of a beam with a curvilinear axis is strongly required 
with respect to the proposed simplified dog-bone beam 
model. In particular, the simplified preliminary optimiza-
tion process is performed for different case studies with 
progressively increasing span length.

In the case of one lobe emptying function, it possi-
ble to reasonably assume that the percentages of criti-
cal emptying value beyond which the proposed dog-
bone model significantly deviates from the FEM solution 
model are about 60% of the beam total height. As a mat-
ter of fact, until this value, the error is limited within a 
certain engineering tolerance. A different scenario must 
be described in the case of the three lobes emptying 
function in which, also considering the optimal empty-
ing value, the deviations of the dog-bone beam with 
respect to the FEM model still remain negligible. There-
fore, in this range, the dog-bone beam tends to almost 
correctly approximate the behaviour of a non-prismatic 
beam with a curvilinear axis and variable cross section. 
Overall the analyzed emptying technique, the adoption 
of the using three lobes emptying function seems to 

Fig. 7  Optimal results 
obtained by the GA algo-
rithm with a population of 
20 individuals and maximum 
iterations allowed of 50, 
adopting the dog-bone Matlab 
models for three hypothetical 
span length L = 20, 30, 40 m . 
The left column illustrates the 
optimal results adopting one 
lobe sine emptying function, 
whereas the right column 
contains the optimal results 
obtained with three lobes sine 
emptying function

Table 1  Best optimal results obtained from the GA algorithm with a 
population size 20 and maximum iterations set to 50. After 10 runs, 
the best optimal results have been identified

L [m] One Lobe Three Lobes

�h [m] �h1 [m] �h2 [m]

20 1.00 1.49 0.37
30 0.76 1.38 0.23
40 0.49 0.37 0.06
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be the best of the one within which authors tested in 
this work despite it represent the hardest and the most 
expensive technological solution.

Moreover, the different levels of emptying percentage, 
when slenderness increases, reached by the two emp-
tying functions investigated is attributable both to the 

beam shapes and also to the adopted static scheme. A 
fully restrained beam tends to concentrate efforts at fixed 
joints in fact the one lobe emptying function, especially for 
beams with a high value of slenderness, tends to reduce 
the height section at the midspan whilst an increase of the 
height section occurs at the midspan with the three lobes 

Fig. 8  Bending moments at fixed joint, midspan and maximum deflection comparison diagrams for the optimal results obtained by the GA 
and the dog-bone Matlab models respect to the FEM Midas actual models results for three hypothetical span length L = 20, 30, 40 m
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Table 2  Comparison of 
bending moments at fixed 
joint ( Mfix ) and in midspan 
( Mmid ) and maximum 
deflection ( � ) between the 
MIDAS FEM model and the 
MATLAB proposed code 
related to the one lobe model 
optimal results

One Lobe MIDAS MATLAB

MFEM,fix MFEM,mid �FEM Mfix Mmid �

[kNm] [kNm] [mm] [kNm] [kNm] [mm]

L=20m
�h 483.4 3.5 22 703.3 6.9 38
2�h/3 713.8 89.5 6 842.0 110.6 7
�h/3 887.4 265.6 4 918.0 277.0 4
L=30m
�h 1207.6 32.6 53 1676.5 54.8 83
2�h/3 1686.0 254.6 27 1930.1 302.3 31
�h/3 2017.9 636.6 20 2075.4 658.0 20
L=40m
�h 2683.1 255.7 101 3285.2 338.5 128
2�h/3 3281.4 704.4 74 3554.8 777.7 81
�h/3 3663.7 1287.5 58 3726.4 1314.9 59

Table 3  Comparison of 
bending moments at fixed 
joint ( Mfix ) and in midspan 
( Mmid ) and maximum 
deflection ( � ) between the 
MIDAS FEM model and the 
MATLAB proposed code 
related to the three lobes 
model optimal results

Three Lobe MIDAS MATLAB

MFEM,fix MFEM,mid �FEM Mfix Mmid �

[kNm] [kNm] [mm] [kNm] [kNm] [mm]

L=20m

�h 517.7 136.4 45 573.8 129.6 44

2�h/3 675.4 208.8 8 744.3 203.8 8

�h/3 848.6 323.9 4 869.0 323.8 4

L=30m

�h 1140.5 205.0 101 1486.2 206.8 109

2�h/3 1607.1 411.7 33 1785.2 421.6 35

�h/3 1958.2 710.0 20 2004.0 716.6 20

L=40m

�h 3571.7 1364.5 60 3626.2 1379.0 60

2�h/3 3679.3 1545.2 55 3702.9 1550.6 54

�h/3 3765.7 1729.6 50 3771.8 1730.0 50

Fig. 9  Overview of the 20 m length beam span Midas models real-
ized for the intermediate emptying ratio. The above figure illus-
trates model adopting one lobe sine emptying function, whereas 

the bottom figure contains the model obtained with three lobes 
sine emptying function
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optimization process. This geometry results in obtaining a 
combination of more functions, which induced a reversal 
of the curvature (as depicted in Figure 7). This curvature 
inversion became less evident for beams with less values 
of slenderness as in the case of beams with 30 and 40 
m of length. The optimal shape for this specific type of 
beam appears with an important plateau (similarly to the 
polycentric arch shape) localized in the central part of the 
beam caused by a curvature inversion: negative bending 
moments are greater than the positive ones at midspan 
and the GA algorithm is not able to perform an optimi-
zation including the curvature inversion, increasing the 
height section at midspan and, hence, the total weight of 
the beam in order to respect the geometrical and stress 
constraints imposed.

As future developments, it will be interesting to study 
the behavior of beams with different slenderness ratios 
but realized with a material in which the traction response 
results different to the compression one as in the reality 
in order to overcome the limitations as mentioned before. 
In conclusion, an optimization dimensional process is 
performed in order to investigate the range within which 
some initial hypothesis and simplified assumptions do not 
affect the real behavior of the structure. In this way, it is 
noted that variable cross section beams optimized with 
the three lobes emptying function regardless of their 
length can be used as a starting point to implement a 
more accurate analysis in the future.
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