1,597 research outputs found

    Energy harvesting from earthquake for vibration-powered wireless sensors

    Get PDF
    Wireless sensor networks can facilitate the acquisition of useful data for the assessment and retrofitting of existing structures and infrastructures. In this perspective, recent studies have presented numerical and experimental results about self-powered wireless nodes for structural monitoring applications in the event of earthquake, wherein the energy is scavenged from seismic accelerations. A general computational approach for the analysis and design of energy harvesters under seismic loading, however, has not yet been presented. Therefore, this paper proposes a rational method that relies on the random vibrations theory for the electromechanical analysis of piezoelectric energy harvesters under seismic ground motion. In doing so, the ground acceleration is simulated by means of the Clough-Penzien filter. The considered piezoelectric harvester is a cantilever bimorph modeled as Euler-Bernoulli beam with concentrated mass at the free-end, and its global behavior is approximated by the dynamic response of the fundamental vibration mode only (which is tuned with the dominant frequency of the site soil). Once the Lyapunov equation of the coupled electromechanical problem has been formulated, mean and standard deviation of the generated electric energy are calculated. Numerical results for a cantilever bimorph which piezoelectric layers made of electrospun PVDF nanofibers are discussed in order to understand issues and perspectives about the use of wireless sensor nodes powered by earthquakes. A smart monitoring strategy for the experimental assessment of structures in areas struck by seismic events is finally illustrated

    The strengths and failures of incentive mechanisms in notional defined contribution pension systems

    Get PDF
    Public pension systems based on the Notional Defined Contribution (NDC) principle were introduced during the ‘90s in Italy, Sweden and Poland, among other countries. They mimic private savings, in that individuals get back, as pensioners, what they contributed to social security during working life, plus returns. As such, NDC systems should realize actuarial equity and incentive neutrality. However, when one considers the presence of NDC pensions together with minimum and social assistance pensions, this is no longer true. Indeed, in all the three countries considered, the NDC system shows a regressive feature, which disincentivizes contributions, particularly from low earners, who would be better off entering, or staying in, the shadow economy. In order to reduce the extent of this phenomenon, we examine the effects of introducing, or increasing, the possibility of accumulation of social assistance and NDC pensions, which would also improve pension adequacy. A complete accumulation of the two would solve the incentive problem, but would be costly and would require a structural reform of the pension system financing mechanism, altering the current balance between social contributions and general fiscal revenues. We show the effects of a change in the cumulation rules for social assistance and NDC pensions in Italy using CAPP_DYN, a population-based dynamic microsimulation model, which allows assessment of the evolution of the pension system in the coming decades and the distributional implications of such reform.

    Optimization of force-limiting seismic devices connecting structural subsystems

    Get PDF
    This paper is focused on the optimum design of an original force-limiting floor anchorage system for the seismic protection of reinforced concrete (RC) dual wall-frame buildings. This protection strategy is based on the interposition of elasto-plastic links between two structural subsystems, namely the lateral force resisting system (LFRS) and the gravity load resisting system (GLRS). The most efficient configuration accounting for the optimal position and mechanical characteristics of the nonlinear devices is obtained numerically by means of a modified constrained differential evolution algorithm. A 12-storey prototype RC dual wall-frame building is considered to demonstrate the effectiveness of the seismic protection strategy

    Transfusion thresholds and beyond

    Get PDF
    Comment on Liberal transfusion strategy improves survival in perioperative but not in critically ill patients. A meta-analysis of randomised trials. [Br J Anaesth. 2015

    Chloride Penetration in Circular Concrete Columns

    Get PDF
    Most of the diffusion models of chloride ions in reinforced concrete (RC) elements proposed in literature are related to an isotropic homogeneous semi-infinite medium. This assumption reduces the mathematical complexity, but it is correct only for plane RC elements. This work proposes a comparison between the diffusion model of chloride ions in RC circular columns and in RC slab elements. The durability of RC cylindric elements estimated with the circular model instead of the plane model is shown to be shorter. Finally, a guideline is formulated to properly use the standard and more simple plane model instead of the circular one to estimate the time to corrosion initiation of cylindrical RC elements

    Strain rate, temperature and deformation state effect on Ecoflex 00-50 silicone mechanical behaviour

    Get PDF
    Silicone elastomers are extremely attractive materials due to their wide range of possible applications, from biomedical engineering to soft robotics. In this work, an extensive thermo-mechanical characterization of Ecoflex Shore hardness 00–50, a commercially available silicone elastomer, has been carried out to compensate for the lack of relevant literature. The mechanical behaviour of the material has been characterized by performing monotonic and cyclic loading tests. These tests were performed in different deformation states, i.e. uniaxial tension, pure shear and biaxial tension, at different strain rates and temperatures. Experimental findings allowed to highlight the material time-dependent response and quantify the contribution of dissipative deformation phenomena to the overall strain energy. Uniaxial tensile tests performed at different temperatures (between −40 °C and 140 °C) showed that the material mechanical behaviour is sensitive to temperature in this range: a decrease of the ultimate stress and strain has been observed with increasing temperature. Finally, the data obtained from the latter tests have been used to define a failure envelope, applied for the first time to Ecoflex silicones, and valuable to describe the material ultimate stress and strain at any temperature and strain rate

    Influence of curing thermal history on cross-linking degree of a polydimethylsiloxane: Swelling and mechanical analyses

    Get PDF
    In this work, the change of the elastic properties induced by a change in cross-linking conditions of polydimethylsiloxane is investigated by measuring its shear modulus by dynamic mechanical analysis and correlating it to that predicted from swelling measurements. Polymer cross-linking is performed at different curing temperatures reached with ramps at different heating rates. From both mechanical and swelling measurements, the molecular weight between cross-links, MC, is determined, and its dependency on the applied thermal history is analyzed. The main results are: (i) the elastic modulus of the cured material is not significantly affected by the heating rate adopted, while (ii) the curing temperature has a significant influence on the polydimethylsiloxane mechanical properties. In addition, (iii) MC evaluation from swelling measurements is in good agreement with that estimated from mechanical measurements when appropriate theories are considered. This last result suggests that swelling experiments can be considered as a reliable tool to predict the elastic modulus of the polydimethylsiloxane studied. The quantitative information reported in this paper, also obtainable by the suggested method if other thermal curing histories are applied, is extremely useful for the proper design of devices based on polydimethylsiloxane

    Optimal preliminary design of variable section beams criterion

    Get PDF
    The present paper discusses about optimal shape solution for a non-prismatic planar beam. The proposed model is based on the standard Timoshenko kinematics hypothesis (i.e., planar cross-section remains planar in consequence of a deformation, but it is able to rotate with respect to the beam center-line). The analytical solution for this type of beam is thus used to obtain deformations and stresses of the beam, under different constraints, when load is assumed as the sum of a generic external variable vertical one and the self-weight. The solution is obtained by numerical integration of the beam equation and constraints are posed both on deflection and maximum stress under the hypothesis of an ideal material. The section variability is, thus, described assuming a rectangular cross section with constant base and variable height which can be described in general with a trigonometric series. Other types of empty functions could also be analyzed in order to find the best strategy to get the optimal solution. Optimization is thus performed by minimizing the beam volume considering the effects of non-prismatic geometry on the beam behavior. Finally, several analytical and numerical solutions are compared with results existing in literature, evaluating the solutions’ sensibility to some key parameters like beam span, material density, maximum allowable stress and load distribution. In conclusion, the study finds a critical threshold in terms of emptying function beyond which it is not possible to neglect the arch effect and the curvature of the actual axis for every different case study described in this work. In order to achieve this goal, the relevance of beam span, emptying function level and maximum allowable stress are investigated

    Cost and EAL based optimization for seismic reinforcement of RC structures

    Get PDF
    In this paper, a new genetic algorithm-based framework aimed at efficiently design multiple seismic retrofitting interventions is proposed. The algorithm focuses on the minimization of retrofitting intervention costs of reinforced concrete (RC) frame structures. The feasibility of each tentative solution is assessed by considering in an indirect way the expected annual loss (EAL), this evaluation is performed by referring to different limit states whose repairing costs are expressed as a percentage of reconstruction costs and evaluating the respective mean annual frequency of exceedance. As the EAL takes into account the overall structural performances, to involves both serviceability and ultimate limit states, two different seismic retrofitting techniques are considered. In particular, FRP wrapping of columns is employed to increase the ductility of RC elements managing life safety and collapse limit state demands. On the other hand, steel bracings are used to increase the global stiffness of the structure and mainly increase operational and damage limit states performances. The optimization procedure is carried out by the novel genetic algorithm-based framework developed in MatlabÂź that is connected to a 3D RC frame fiber-section model implemented in OpenSees. For both the retrofitting systems, the algorithm provides their position within the structure (topological optimization) and their sizing. Results will show that seismic retrofitting can be effectively designed to increase the overall structural safety by efficaciously optimizing the intervention costs
    • 

    corecore