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Abstract

This paper is focused on the optimum design of an original force-limiting
floor anchorage system for the seismic protection of reinforced concrete (RC)
dual wall-frame buildings. This protection strategy is based on the inter-
position of elasto-plastic links between two structural subsystems, namely
the lateral force resisting system (LFRS) and the gravity load resisting sys-
tem (GLRS). The most efficient configuration accounting for the optimal
position and mechanical characteristics of the nonlinear devices is obtained
numerically by means of a modified constrained differential evolution algo-
rithm. A 12-storey prototype RC dual wall-frame building is considered to
demonstrate the effectiveness of the seismic protection strategy.
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1. Introduction

The protection of structures in earthquake-prone regions may require the
installation of devices for the mitigation of the demand induced by seismic
loads, such as active control systems [1], single or multiple passive tuned mass
dampers [2–4] or base isolators [5, 6]. Throughout the available technologies
for seismic protection, passive devices are especially widespread because of
their robustness, low manufacturing cost (compared to the cost of the whole
building) and easy maintenance. The use of additional mechanical and/or
hydro-mechanical devices often needs a design strategy capable of defining
the optimal configuration that would ensure an adequate reduction of the
seismic demand.

Among the existing strategies for seismic protection, the use of devices
for connecting adjacent structures has been investigated in the past decades.
In this regard, the use of viscous dampers between two neighboring floors
is quite common [7], typically together with a linear spring within a Voigt-
or Maxwell-type configuration [8, 9]. Other studies consider nonlinear mod-
els, such as a friction model [10] or the Bouc-Wen model [11, 12]. For what
concerns the behavior of the coupled buildings, basically all studies assume
shear-type linear elastic and viscously damped systems having one or mul-
tiple degrees-of-freedom [8–12]. Existing literature encompasses analytical
or semi-analytical approaches as well as numerical procedures based on soft
computing techniques. For instance, Zhu and Xu [9] presented closed formu-
lations to estimate the optimal parameters of Maxwell model-defined fluid
dampers connecting adjacent structures under white-noise ground excitation.
The stochastic equivalent linearization technique was exploited in [13] and
an energy performance index is determined by calculating the stochastic re-
sponse of two interconnected structural systems. In this case, the optimal
device is the one that corresponds to the maximum value of the computed
performance index. Differently from rigorous analytical approaches, empiri-
cal design procedures based on the dynamic characteristics of the structure
have the merit of allowing the design of seismic protection strategies by em-
ploying a lower computational effort, see for instance [14] for an application
to the optimal placement of controllers. On the other hand, multi-objective
optimization problems were proposed in [15, 16], and a genetic algorithm
was considered to find the Pareto optimal solutions. Both studies consid-
ered linear elastic shear-type protected systems. Particularly, Uz and Hadi
[16] studied the simultaneous minimization of two objective functions, i.e.
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the maximum relative displacement between two successive floors and the
total number of semi-active magnetorheological dampers. The dampers were
modeled using the Bouc-Wen model and the motion equation was linearized
in a stochastic sense. Pareto optimal solutions were calculated via genetic
algorithm for two different earthquake records.

The passive seismic protection strategy investigated in this paper is based
on the use of energy dissipation devices (nonlinear connectors) to be placed
between the lateral force resisting system (LFRS) and the gravity load re-
sisting system (GLRS). This type of protection system is especially intended
for mid-rise structures, such as conventional residential buildings, hospitals,
schools, laboratories, institutions and commercial buildings. The devices are
positioned with their vertical axis lying on the horizontal plane of the cor-
responding slab, to which they are connected at one edge. On the opposite
side, they are fixed to the LFRS. Therefore, the force developed by the de-
vice acts on the same plane of the slab to which it is linked. The connection
between GLRS and LFRS is initially elastic. Once a predefined horizontal
force level is achieved – which could be either the static friction force for
friction devices or the yield force for other elasto-plastic devices – the pri-
mary transfer mechanism is activated by experiencing a nonlinear behavior,
thus starting to dissipate energy through the relative motion between GLRS
(e.g., floors system and gravity columns) and LFRS (e.g., cores, shear walls,
braced or moment resisting frames). This relative displacement of the floor
is controlled and limited by the displacement capacity of the device. After
an earthquake, only the connectors that suffered high deformations have to
be replaced, without damages to the other structural members of the GLRS
(which have to behave elastically under the design displacement of the seismic
protection system). In this way, the permanent deformations of the building
are removed and the system is brought to its initial configuration. The pres-
ence of these seismic devices uncouples the response of shear wall and floors
system, and thus it enables the design of the GLRS by mainly referring to the
gravity loads. Since the seismic forces carried by buildings originate mostly
from the inertia of the floor system, a reduction of the accelerations trans-
mitted between LFRS and GLRS leads to lower demands for the structural
elements, thus mitigating structural and non-structural damages.

Indeed, the working principle of such protection system is similar to that
exploited when coupling adjacent buildings, i.e. it makes use of the fact that
dynamic responses of dissimilar systems are different under the same ground
motion. Nonetheless, the seismic protection system here considered is some-
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what different. Most important, in this study two subsystems of one building
(namely, LFRS and GLRS) are connected each other, against the typical sit-
uation that occurs if two adjacent buildings are coupled, where two systems
are connected. The considered seismic protection strategy is best suited for
new buildings, even if it represents a feasible choice for the retrofitting of
existing RC buildings. Concerning possible issues arising from the installa-
tion of the nonlinear connectors, practical problems will be certainly faced
when placing these devices within the structural system of an existing RC
building, whereas in new buildings the subsystems can be designed so as to
best incorporate the connectors. On the other hand, the connection of two
adjacent buildings may result quite problematic if they belong to different
owners. Hence, eventual disputes are avoided when connecting structural
subsystems, because the intervention concerns the same building.

Within this framework, the optimum design of elasto-plastic devices to be
placed between GLRS and LFRS is hereafter investigated in order to demon-
strate the effectiveness of the seismic protection strategy. Further aspects
regarding different mechanical characteristics, improved nonlinear modeling,
constructive and technological details of the connectors will be topics of fu-
ture insights. Differently from the previous studies in similar research ar-
eas, this paper considers a realistic structural modeling for both subsystems,
whereby the performance under seismic loads is evaluated through nonlinear
dynamic analyses. Based on these assumptions, the resulting constrained
seismic design optimization problem cannot be solved analytically and, as a
consequence, a computer-aided procedure that exploits an advanced differ-
ential evolution algorithm has been implemented. The optimization strategy
has been developed in MATLAB whereas the OpenSees platform has been used
for nonlinear dynamic analysis. Results for a 12-storey prototype reinforced
concrete (RC) dual wall-frame building are discussed at the end of the paper
for demonstrating the effectiveness of such seismic protection strategy.

2. Optimum design problem

The seismic performance of the protected building depends on, both, me-
chanical properties and vertical distribution of the passive devices connecting
LFRS and GLRS. Choosing optimal mechanical characteristics and position
for such floor connectors is not a straightforward numerical task, as either
favorable or unfavorable results can be achieved. The search for favorable
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links’ configurations and properties is hereafter formulated as constrained
single-objective optimization problem.

2.1. Formulation

The optimum design problem of this seismic protection strategy aims at
minimizing a cost-based objective function under the condition that appro-
priate constraints (depending on the performance of the protected structural
system) are satisfied. Therefore, it is mathematically formulated as single-
objective constrained optimization problem:

min
x∈D
{f(x)}

s.t.

ga(x) ≤ 0

(1)

where f(x) is the objective function, x is the design vector and ga(x) are
constraints of the optimization problem (with a = 1, . . . , NC). The design
vector x is lower bounded by xl and upper bounded by xu. These bounds
define the hyper-rectangle S, that is the total search space of the problem.
The best design solution x∗ is the global minimum of the objective function
within the feasible domain D ⊂ S.

2.2. Design variables

Floor connectors are modeled as elastic-perfectly plastic springs with no
supplemental damping. The vector xi =

{
xi1 . . . xij . . . xin

}
denotes

the ith candidate design solution and it includes the stiffness value of each
link, which is assumed as a continuous variable. For instance, xij is the
ith candidate stiffness link value at the jth floor. The strength value of
each link depends on the selected device, and it can be (linear or nonlin-
ear) function of the stiffness. In doing so, the strength is not considered as
a constant value because it depends on the corresponding optimal stiffness
value. As the stiffness of the links are the independent design parameters
of the optimization problem, the number of dimensions of the search space
is restricted to the number of floor levels (whereas it doubles when consid-
ering the strength value of each link as an independent design parameter).
Although every candidate design solution xi is defined through n stiffness
values, the building may not have all n possible floor connectors installed.
The placement of a link is based on the corresponding design variable value
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Figure 1: Placement of links between the LFRS and the GLRS: adopted strategy to
identify operative floor connectors within a bi-dimensional search space.

by adapting an idea presented in [17] and recently implemented in [18] to
look for the best seismic isolators configuration using a genetic algorithm.
On assuming x0j = xlj + ∆xj = xlj + 0.5(xuj −xlj) (where xlj and xuj are the jth
components of xl and xu, respectively), the floor connector at the jth floor
is operative if x0j < xij ≤ xuj and it does not exist otherwise. Therefore, the
vectors x0 and xu are the physical bounds of the design vector x. On the
contrary, the jth floor connector is too flexible if xlj ≤ xij ≤ x0j , and thus
does not provide an effective link between the GLRS and the LFRS. The
(fictitious) bound xl is then defined in such a way that an equal probability
of being operative or inexistent is given to any floor connector in the build-
ing. The adopted approach is graphically explained in Figure 1 when the
objective function f(x) takes real values over a bidimensional search space
S (that is, in two-storey building structures). This strategy has the merit to
allow the use of real positive numbers to represent the link stiffness without
introducing additional variables in order to codify the links’ configuration.
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2.3. Objective function

The objective function of the optimization problem is the total cost of
the seismic protection system:

f(x) =
∑
j∈L

cj(x) (2)

where L = {j : x0j < xj ≤ xuj } is the set collecting operative floor connectors
and cj(x) is the cost associated with the implementation of the jth link.
The cost cj(x) can include, both, manufacturing costs (which depend on the
selected device) and installation costs. However, it is not necessary to use
real costs in order to apply Eq. (2). On assuming cj(x) a linear function of
the link stiffness xj, the objective function in Eq. (2) reduces to:

f(x) =
∑
j∈L

xj (3)

which can be used without a priori information about the manufacturing
cost of the device to be installed. The cost function in Eq. (3), however,
can be easily reformulated once the class of devices to be installed has been
selected.

2.4. Constraints

The optimal mechanical properties and positions of the floor connectors
are selected to minimize the objective function while satisfying appropriate
limit states. Problem constraints concern with the structural performance
and the operating conditions of the floor connectors.

Inter-storey drifts. The protection system is designed to keep the inter-storey
drift values below a given threshold. The maximum allowable drift value de-
pends on the desired structural performance. It, in turn, depends on the
considered building and the acceptable damage severity. Therefore, the fol-
lowing drift-based constraint is assumed:

max
τ
{δj(x|ag(τ))} ≤ δmax (4)

where δj(x|ag(τ)) is the inter-storey drift of the jth storey under the ground
acceleration ag(τ) for an assigned design vector x (τ is the time parameter)
whereas δmax is the maximum allowable inter-storey drift value. Imposing
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a constraint to the inter-storey drift demand for both GLRS and LFRS is
of primary importance for the preservation of the structural integrity and
the prevention of the damage induced by earthquakes, especially on vertical
structural members and walls. An inter-storey drift limitation is also im-
portant to minimize damage and prevent fall out of non-structural elements
or building equipments that are sensitive to relative displacements between
storeys.

Absolute accelerations. The (absolute) floor acceleration is often considered
as a performance index related to non-structural damages and should be lim-
ited to a certain value that depends on the type of building. The acceleration-
based constraint of the optimization problem is the following:

max
τ
{aj(x|ag(τ))} ≤ amax (5)

where aj(x|ag(τ)) is the acceleration at the jth storey under the ground ac-
celeration ag(τ) for an assigned design vector x whereas amax is the maximum
acceleration value. Considering the fact that this type of protection system is
also intended for important buildings (e.g., hospitals, schools, laboratories,
institutions and commercial buildings characterized by the presence of ex-
pensive content and equipments), it is certainly required to limit the seismic
demand in terms of floor accelerations. For this reason, the absolute accel-
eration of the GLRS (i.e., the acceleration at the floors level) must be lower
than a predefined threshold in order to minimize non-structural damages.
For the structural configuration here investigated, the LFRS is represented
by a shear wall that is free of sensitive furniture and equipments. Therefore,
floor accelerations of the LFRS are not monitored.

Sliding. Any isolation device is designed and manufactured to operate within
certain deformation limits. Therefore, the relative displacement between the
LFRS and the GLRS should be limited within a prescribed range. Hence,
it has to be ensured that the displacement demand of the optimized system
remains within the limits specified by the manufacturer, thus preventing the
link failure. As a consequence, the following constraint is also imposed:

max
τ
{dj(x|ag(τ))} ≤ dmax (6)

where dj(x|ag(τ)) is the relative displacement between the LFRS and the
floor system (GLRS) at the jth storey under the ground acceleration ag(τ)
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for an assigned design vector x whereas dmax is the corresponding maximum
allowable value.

3. Optimization procedure

Structural performance and operating conditions of the floor connectors
will be evaluated through nonlinear simulations using real earthquake records
and an equivalent bidimensional finite element model representing the struc-
tural system layout. Under these assumptions and because of the nonlinear
constraints, no analytical approaches can be used and thus an efficient nu-
merical technique for the optimization of this seismic protection strategy
is required. The development of optimization methods able to handle the
nonlinear behavior of RC structures is a challenging computational task. A
remarkable result in this field has been obtained in [19], in which the program
D.O.T. was used for performing the structural optimization of a RC portal
frame according to the NHERP Guidelines whereas the software DRAIN-2DX

was used for carrying out the pushover analysis.
Within the presented work, the nonlinear behavior of the coupled struc-

tural subsystems is evaluated through nonlinear dynamic analyses whereas
the optimization is performed by means of the (µ+λ)-constrained differential
evolution algorithm [20], see also [21]. The differential evolution algorithm
proposed in [20] has been herein modified by implementing an eigenvector-
based crossover operator. The adopted numerical optimization strategy is
now presented by focusing on the most important implementation issues.

3.1. Basic operations in differential evolution

Among the available nature-inspired paradigm to solve optimization prob-
lems, the DE has proved to be very effective, resulting among the most pop-
ular in structural engineering applications, e.g. [22]. Its search mechanism
is based on the manipulation of NP candidate solutions (or individuals)
xi (with i = 1, . . . , NP ) at each iteration t. The first operator is the so-
called mutation which performs a perturbation on the candidate solution by
using the differences between couples of selected individuals. The (µ + λ)-
constrained differential evolution is based on the following mutation opera-
tors:

vi = xr1 + F (xr2 − xr3) (7a)

vi = xr1 + F (xr2 − xr3) + F (xr4 − xr5) (7b)
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vi = xi + F (xr1 − xi) + F (xr2 − xr3) (7c)

vi = xi + F (xbest − xi) + F (xr1 − xr2) (7d)

which are dubbed “rand/1”, “rand/2”, “current-to-rand/1” and “current-
to-best/1”, respectively. In Eq. (7), vi =

{
vi1 . . . vij . . . vin

}
is the

mutant vector, r1, . . . , r5 are integers randomly selected from {1, . . . , NP}
such that r1 6= r2 6= r3 6= r4 6= r5, F is the mutation (or scaling) factor and
xbest is the best individual in the population. The feasibility of vi is ensured
by adopting a projection scheme. This operation modifies each out-of-bound
component of vi using the following rule:

vij =


2xlj − vij if vij < xlj
2xuj − vij if vij > xuj
vij otherwise

. (8)

The binomial crossover operator is defined in such a way that ∀j:

uij =

{
vij if rand ≤ CR or j = jrand
xij otherwise

(9)

where rand is a uniformly distributed random number between 0 and 1,
jrand is a randomly selected integer from 1 to n, CR is the crossover rate.
The eigenvector-based operator is built on the binomial crossover and is
implemented as follows [23]:

ui =

{
Q∗Txover(Qxi,Qvi) if rand ≤ P
xover(xi,vi) otherwise

(10)

where xover(·, ·) is the binomial crossover, P is the eigenvector ratio, Q∗T is
the conjugate transpose of the eigenvector basis Q (with C = QΛQ−1, being
C the covariance matrix over the current population).

The iterative strategy runs until t ≤ T , where T is the maximum number
of iterations.

3.2. Improved (µ+ λ)-constrained differential evolution

The pseudo-code of the (µ+λ)-constrained differential evolution proposed
in [20] is described in Algorithm 1, together with the external links to the
OpenSees platform for nonlinear dynamic analyses. Key components of the
optimization procedure are:
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• an improved differential evolution (IDE) algorithm based on the simul-
taneous implementation of several mutation operators, and

• the archiving-based adaptive trade-off model (ArATM) which selects a
proper constraint-handling mechanism for each situation.

3.3. Degree of constraint violation

The degree of constraint violation of the candidate solution xi is computed
∀a:

Ga(xi) = max{0, ga(xi)}. (11)

Subsequently, the difference ∆ is calculated using Eq. (12):

∆ = max
a
{max

i
{Ga(xi)}} −min

a
{max

i
{Ga(xi)}} (12)

and the following flag variable criterion is introduced:

criterion =

{
1 if ∆ ≤ η
2 otherwise

(13)

where η is a threshold value, i.e. ∆ ≤ η implies that the difference among the
violations is not too large. If criterion is equal to 1, then G(xi) is calculated
by summing the degrees of constraint violation Ga(xi) in Eq. (11), that is:

G(xi) =
NC∑
a=1

Ga(xi). (14)

On the other hand, if criterion is equal to 2, then G(xi) is defined as
follows:

G(xi) =

∑NC
a=1Ga(xi)

NC
(15)

where Ga(xi) is:

Ga(xi) =
Ga(xi)

maxi{Ga(xi)}
. (16)

3.4. Improved differential evolution

The pseudo-code of the IDE algorithm is given in Algorithm 2. Its output
is the offspring population Qt (consisting of λ individuals) obtained from the
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Algorithm 1 (µ+ λ)-constrained differential evolution

Require: Structural model, loading conditions, search space
Require: Control parameters of the optimizer

Set t = 0 and A = Φ (A is the archive)
The initial population Pt = {x1,x2, . . . ,xµ} is obtained by sampling µ
points in S
for i← 1, µ do

Get xi ∈ Pt
Calculate the objective function f(xi)
Call OpenSees and calculate the degree of constraint violation G(xi) (see
Sect. 3.3)

end for
while t ≤ T do

Generate λ offspring to create the population Qt using individuals in Pt
(see Sect. 3.4)
for i← 1, λ do

Get xi ∈ Qt
Calculate the objective function f(xi)
Call OpenSees and calculate the degree of constraint violation G(xi)
(see Sect. 3.3)

end for
Merge Pt and Qt, i.e. Ht = Pt

⋃
Qt

Select µ potential individuals from Ht by means of the archiving-based
adaptive trade-off model (see Sect. 3.5), and generate the next popula-
tion Pt+1

t = t+ 1
end while
return Best (feasible) solution x∗ ∈ Pt and the total (minimum) cost of
the seismic protection system f(x∗)
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parent population Pt (whose number of individuals is µ) by implementing
several mutation operators simultaneously.

Algorithm 2 Improved (µ+ λ)-differential evolution

Require: Parent population Pt
Require: Control parameters of the optimizer

Set Qt = Φ
for i← 1, µ do

Get xi ∈ Pt
Perform rand/1 mutation scheme and eigenvector-based crossover to cre-
ate the first offspring y1

Perform rand/2 mutation scheme and eigenvector-based crossover to cre-
ate the second offspring y2

Perform current-to-rand/best/1 mutation scheme and improved breeder
genetic algorithm mutation to create the third offspring y3

Update the offspring population, i.e. Qt = Qt
⋃
{y1,y2,y3}

end for
return Offspring population Qt

In Algorithm 2, the “current-to-rand/best/1” mutation adopts an iteration-
dependent criterion to switch from the “current-to-rand/1” strategy in Eq.
(7c) to the “current-to-best/1” strategy in Eq. (7d). It works as follows:

vi =

{
xi + F (xr1 − xi) + F (xr2 − xr3) if t ≤ κT
xi + F (xbest − xi) + F (xr1 − xr2) otherwise

(17)

where κT is the threshold iteration number (κ is a positive control param-
eter less than 1). The third offspring y3 is finally obtained by applying an
improved breeder genetic algorithm mutation to vi with probability PM :

y3j =

{
vij ± rangi

∑15
s=0 αs2

−s if rand < 1
n

vij otherwise
. (18)

In Eq. (18), rand is a freshly generated uniform random number between
0 and 1, rangi = (xui −xli)(1− t/T )6 is the mutation range, the sign + or − is
chosen with probability 0.5, and αs ∈ {0, 1} is a random number generated
with the probability pr(αs = 1) = 1

16
. Moreover, if the condition t ≤ κT

holds, then Eq. (18) is not performed. This implies that y3 = vi as it results

13



from the “current-to-rand/1” scheme in Eq. (17).

3.5. Archiving-based adaptive tradeoff model

The combined population Ht = Pt
⋃
Qt can include feasible individuals

only, infeasible candidate solutions only, both infeasible and feasible individ-
uals. As the formulated optimization problem involves several constraints,
the probability of handling a large number of infeasible solutions is very high
(especially at the beginning, where it is possible that no feasible solution ex-
ists within the initial population). Classical penalty-based approaches were
found not able to solve efficiently the constrained optimization problem here
considered. Therefore, an advanced mechanism for handling infeasible solu-
tions is required to mitigate the overall computational effort. In this study,
the effectiveness of the archiving-based adaptive trade-off model (ArATM)
[20] is investigated. Depending on the composition of Ht, three situations
can occur.

Feasible candidate solutions only. It might occur that Ht only includes fea-
sible candidate solutions (e.g. at the end of the evolutionary search). In this
case, feasible candidate solutions in Ht are sorted with reference to their ob-
jective function value, and the best µ individuals are selected for the parent
population Pt+1.

Infeasible candidate solutions only. When the feasible domain D is very small
with respect to the search space S, it might be possible that Ht includes in-
feasible candidate solutions only. In this case, the ArATM considers the
objective function f(x) and the degree of constraint violation G(x) as two
objectives which are examined simultaneously, thus obtaining a bi-objective
optimization problem. The pseudo-code of the ArATM when infeasible in-
dividuals only occur in Ht is given in Algorithm 3 (the symbol | · | is the
cardinality of the set between the vertical bars).

Both infeasible and feasible individuals. The procedure for this case is the
following. First, the indices of the feasible individuals and those of the in-
feasible candidate solutions are stored into two sets, namely Z1 and Z2.
Moreover, the best feasible individual xbest and the worst feasible individual
xworst are identified. Subsequently, the normalized objective function f(xi)
is calculated as follows:

f(xi) =
f ′ − f ′min
f ′max − f ′min

(19)
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Algorithm 3 ArATM in the event of infeasible individuals only within Ht

Require: Combined population Ht

Require: Control parameters of the optimizer

if A 6= ∅ then
Select randomly randsize individuals from A and put them into Ht

(randsize is a random integer number between 0 and |A|)
end if
Set A = Φ and Pt+1 = Φ
while |Pt+1| < µ do

Identify non-dominated individuals in Ht using Pareto dominance
Sort non-dominated individuals in ascending order using the degree of
constraint violations
Select the first half of the non-dominated individuals and store them
into Pt+1

Remove selected non-dominated individuals from Ht

end while
if |Pt+1| > µ then

Delete the last (|Pt+1| − µ) individuals in Pt+1 and store them into Ht

end if
All individuals in Ht are stored into A
return New parent population Pt+1

15



where

f ′ =

{
f(xi) if i ∈ Z1

max{ϕf(xbest) + (1− ϕ)f(xworst), f(xi)} if i ∈ Z2
(20a)

f ′max = max
z∈Z1

⋃
Z2

{f ′(xz)} (20b)

f ′min = min
z∈Z1

⋃
Z2

{f ′(xz)}. (20c)

The symbol ϕ in Eq. (20a) is the feasibility proportion of the combined
population Ht. The normalized degree of constraint violation of each can-
didate solution is defined with reference to the flag variable criterion, thus
obtaining:

G =


0 if i ∈ Z1

G(xi)−Gmin

Gmax −Gmin

if i ∈ Z2 and criterion = 1

G(xi) if i ∈ Z2 and criterion = 2

(21)

where
Gmax = max

z∈Z2

{G(xz)} (22a)

Gmin = min
z∈Z2

{G(xz)}. (22b)

It is understood that G(xi) is evaluated as in Eq. (14) if criterion = 1
or as in Eq. (15) if criterion = 2. The final fitness function ffinal(xi) is then
calculated ∀i as follows:

ffinal(xi) = f(xi) +G(xi) (23)

and µ individuals with the smallest ffinal(xi) value are selected to create the
next parent population Pt+1.

4. Numerical application

The optimization of the force-limiting floor anchorage system for a proto-
type RC dual wall-frame building is presented in the following. Final results
are discussed to evaluate the effectiveness of the seismic protection strategy
in comparison with the performance of the same structural system but with
traditional cast-in-situ rigid connections between LFRS and GLRS.
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4.1. Prototype structure

The prototype RC structure is a 12-storey residential building with a
footprint of 55 m× 30 m. The LFRS consists of two exterior shear walls along
the longitudinal direction and two interior shear walls along the transversal
direction. The inter-storey height is equal to 4.88 m for the ground floor
whereas it is equal to 3.20 m for all remaining floors. Columns’ section is
0.76 m × 0.76 m from ground floor to 6th floor, and it is equal to 0.56 m
× 0.56 m from 6th to 12th floor. The transversal section of the shear wall
is 13.40 m × 0.50 m and the RC slab has a thickness of 0.20 m. Structural
regularity in plan is guaranteed by the symmetry with respect to the two
horizontal orthogonal axes. All the vertical elements are continuous from the
foundation to the top of the building. Due to a higher ground storey height
with respect to the floors above, the lateral stiffness of this floor is about
30% of the stiffness of the first floor. The geometry of the RC building is
shown in Figure 2.

4.2. Structural model and analysis

An equivalent bidimensional finite element model was developed consid-
ering frames and shear walls acting along the transverse direction of the
building. All structural members are modeled as elastic beam elements with
an equivalent gross section defined as follows:

• 6 column sections for the equivalent exterior and interior gravity columns
(GLRS),

• 5 diaphragm strip sections for the equivalent beams (GLRS), and

• 2 shear wall sections for the equivalent shear wall (LFRS).

Cracked sections are considered. Hence, the inertia of the cracked sections
Icr is obtained by reducing the inertia of the uncracked section Ig by 30%
for the gravity columns, 75% for the beams and 65% for the shear wall. The
equivalent bidimensional finite element model model is depicted in Figure 3.
By assuming a rigid connection between LFRS and each floor diaphragm,
the first three eigenperiods are 1.374 s, 0.229 s and 0.105 s.

The OpenSees platform has been used to assess the response of the struc-
tural system by performing nonlinear dynamic analyses on a preselected set
of spectrum compatible accelerograms. Rayleigh damping is assumed with
a critical damping ratio equal to 2% considering first and third mode. The
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gravity load is applied (dead loads + 25% live loads) in order to take into
account the second order effects (P-Delta effects). The nonlinear behavior of
the structural system is allowed and concentrated at the connection between
LFRS and GLRS as well as at the base of the shear wall. Zero-length nonlin-
ear elements with an elastic-perfectly plastic behavior (uniaxialMaterial
Hardening from OpenSees) are selected to model the floor connectors, while
the base of the shear walls is modeled as a zero-length rotational hinge with
pinching-type behavior (uniaxialMaterial Pinching4 from OpenSees). In
particular, the parameters of the hysteretic law representing the shear wall re-
sponse were calibrated so as to match the results from a cyclic test performed
on precast shear walls in [24]. The initial stiffness of the floor connectors in
[kN/m] is the design variable of the optimization procedure whereas it is
assumed that the yield strength is a linear function of the initial stiffness.
Specifically, the yield strength value Fy is obtained by dividing the initial
stiffness by a predefined constant factor.

Natural accelerograms were selected within the seismic inputs available at
the PEER NGA database. They have been scaled so as to match the design
response spectrum having a peak ground acceleration (PGA) equal to 0.50
g. In this regard, the technique selected for this study is the linear scaling
of the seismic inputs. The median spectrum calculated from all the spectra
of the selected accelerograms has to satisfactory match the design response
spectrum within the relevant range of periods of the structural system with
rigid connections (i.e., 0.6-2.0 s). Six natural earthquake records have been
considered for the present numerical optimization. They are representative
of earthquakes recorded at different locations, i.e. Kobe (EQ1), Loma Prieta
(EQ2, EQ3) and Northridge (EQ4, EQ5, EQ6). The corresponding spectra
are showed in Figure 4.

The (µ+ λ)-constrained differential evolution algorithm has been imple-
mented in MATLAB, and suitable scripts were developed to allow the interac-
tion with OpenSees. For this case-study, the optimization problem consists
of 48 constraints. A damage limitation limit state is considered, for which
a seismic action having a larger probability of occurrence than the design
seismic action associated with the ultimate limit state has to be assumed.
For this reason, a reduction factor for the accelerograms equal to 0.5 is se-
lected in order to take into account the lower return period of the earthquake
combined with the damage limitation requirements. The maximum allow-
able drift for, both, LFRS and GLRS is 0.5% of the inter-storey height. The
maximum acceleration of the GLRS at the floors level is 0.20 g whereas the
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Figure 4: Spectra of the considered ground acceleration time histories, together with the
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sliding limit is 0.25 m. Threshold values for interstorey drift and floor ac-
celeration approximately correspond to light structural damage scenario in
moment resisting frames and their contents [25]. The total number of design
variables is 12, and a wide search space has been considered. The maximum
and the minimum values of the link stiffness are 5,000 kN/m and 500,000
kN/m, respectively. Control parameters of the optimizer are listed in Tab.
1. The total number of fitness evaluations is 5,075.

4.3. Results

The final optimal solution x∗ after 5,075 fitness evaluations includes the
following no-null elements: x∗1 = 171, 461.55 kN/m (F ∗y,1 = 198.45 kN), x∗3 =
416, 942.49 kN/m (F ∗y,3 = 482.57 kN), x∗5 = 179, 080.99 kN/m (F ∗y,5 = 207.27
kN), x∗11 = 189, 604.48 kN/m (F ∗y,11 = 219.45 kN). This means that the
optimal configuration of the protection system is based on the installation of
connectors at the first, third, fifth and eleventh floor (i.e., 1/3 of the total
number of floors has to be equipped with floor connectors). Therefore, there
is no need to equip every single floor with such elasto-plastic devices, as it was
also observed in the optimum design of links between adjacent buildings [16].
Convergence curves of either feasibility proportion and objective function are
shown in Figure 5. The trend of the feasibility proportion demonstrates the
complexity of the constrained optimization problem, since no feasible solution
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Parameter Value

µ 35
λ 105
F 0.80
CR 0.90
P 0.50
PM 0.05
η 0.05
κ 0.60

Table 1: Control parameter values for (µ+λ)-constrained differential evolution algorithm.

is within the initial population. Nonetheless, the search strategy has been
able to move all candidate solutions within the optimal feasible region after
1,000 fitness evaluations. The final objective function value is about 40% of
the initial one (the objective function value of the solution with the smallest
degree of constraints violation), highlighting a significant cost reduction with
respect to best initial design.

The performance of the building proctected by means of the optimal force-
limiting floor anchorage system is shown in the following Figure 6 (earthquake
record EQ1), Figure 7 (earthquake record EQ2), Figure 8 (earthquake record
EQ3), Figure 9 (earthquake record EQ4), Figure 10 (earthquake record EQ5)
and Figure 11 (earthquake record EQ6). Results carried out with the optimal
structural configuration (“Optimum”) are compared with the performance of
the building provided with rigid links at each storey (“Rigid”). To better
understand the working principle of the considered seismic protection strat-
egy, it is also useful to include the results corresponding to a very flexible
link between GLRS and LFRS. To this end, the behavior corresponding to
the minimum links configuration needed for the convergence of the nonlin-
ear dynamic analysis (“Minimum”) is considered (this consists of 2 link de-
vices with minimum stiffness value placed at the 4th and 9th floor). Finally,
“Threshold” indicates the maximum admissible value of the corresponding
constraint.

This comparative analysis demonstrates that the non-optimal configura-
tions are not able to satisfy the selected limit states for all the earthquake
records and, according to [25], they might lead the building to experience
moderate or heavy damages. Overall, optimally designed nonlinear floor
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Figure 5: Convergence of feasibility proportion (left) and objective function (right).
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Figure 6: Structural performance for the earthquake record EQ1.
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Figure 7: Structural performance for the earthquake record EQ2.
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Figure 8: Structural performance for the earthquake record EQ3.

24



0 0.3 0.6
0

2

4

6

8

10

12

LFRS drift [%]

S
to

re
y

0 0.5 1
0

2

4

6

8

10

12

GLRS drift [%]

S
to

re
y

0 0.2 0.4
0

2

4

6

8

10

12

Floor acceleration [g]

S
to

re
y

0 0.15 0.3
0

2

4

6

8

10

12

Sliding [m]

S
to

re
y

Optimum Minimum Rigid Threshold

Figure 9: Structural performance for the earthquake record EQ4.
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Figure 10: Structural performance for the earthquake record EQ5.
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Figure 11: Structural performance for the earthquake record EQ6.

connectors lead to performances intermediate between those corresponding
to traditional cast-in-situ rigid connections and those obtained by assuming
a very flexible link. As expected, the presence of a rigid connection between
the GLRS and the LFRS has a negative influence on the floor acceleration
demand values, with evident amplification effects. The placement of nonlin-
ear floor connectors between GLRS and LFRS has great impact in reducing
the floor accelerations, and consequently in reducing the severity of the dam-
age to the floor system and its contents. The LFRS drift is occasionally
reduced by placing such nonlinear floor connectors. This damage mitigation
for the LFRS is clearly beneficial, especially because it helps the reduction
of the accumulated structural damage in case of aftershocks or further seis-
mic events during the design lifetime of the building, enhancing in this way
the global structural safety. A more economical structural repair will be
eventually required for the shear wall (LFRS) because of the damage reduc-
tion. On the contrary, the use of optimized flexible devices between GLRS
and LFRS causes an increment of the GLRS drift values with respect to
the system with rigid connections, since the gravity frame is no more rigidly
linked to the stiffer shear wall that acts as a lateral deformation constraint
for the GLRS. As a consequence, reinforcement details for the GLRS have
to be properly designed in order to account for the slight increment in the
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inter-storey drift demand. Considering the class of buildings to which this
seismic protection strategy is intended and taking into account the increment
of the costs attributable to the installation of the nonlinear connectors, the
expenses to accommodate higher ductility demands at the columns’ sections
of the ground storey (i.e., by providing more confinement through transversal
reinforcement at a smaller spacing) will be rather modest. The increment of
the GLRS drift value is especially relevant for the ground floor because of its
higher storey height. A certain displacement ductility is therein required in
order to avoid failure of the base columns or any soft-storey mechanism. In
this sense, it is not surprising that the optimal solution includes one link at
the first slab. By virtue of the constrained optimization procedure, however,
the GLRS drift values lie below the given threshold. Conversely, a too flex-
ible or inexistent connection between GLRS and LFRS causes inter-storey
drift values of the GLRS larger than the selected threshold, even if it results
beneficial in reducing the floor accelerations.

It is evident that the optimal configuration fulfills all problems’ con-
straints for all earthquake records and it can be considered as a compromise
among these limit configurations. The optimized distribution of floor con-
nectors is able – acting together with the shear walls (LFRS) – to limit the
inter-storey drift of the GLRS (especially at the ground floor), whereas the
relative displacement between GLRS and LFRS is capable to mitigate the
floor accelerations of the GLRS and the structural damages of the LFRS.

As the results clearly shown, the optimization procedure is mostly in-
fluenced by the inter-storey drift of the GLRS. This was actually expected
considering the fact that the inter-storey height of the ground floor (4.88 m)
is sensibly higher than the inter-storey height of the floors above (3.20 m).
This non uniform distribution of the stiffness between the columns at the
base and the columns in the upper floors causes a soft storey-type behav-
ior for the GLRS, i.e. higher inter-storey drift, chord rotation and transverse
ductility demands at the base with a consequent concentration of the damage
at the ground floor.

Finally, the presence of relative displacement between LFRS and GLRS
brings the attention on the design of the floor connectors that are required to
provide the optimal strength and stiffness. They are also required to remain
stable (no softening behavior) before reaching their predefined maximum
displacement capacity.
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5. Conclusions

This paper has addressed the optimum design of a new strategy for mit-
igating the detrimental effects of seismic loads on dual wall-frame buildings.
The considered seismic protection system is intended to decouple the dy-
namic response of the lateral force resisting system (LFRS) from that of the
gravity load resisting system (GLRS). The relative displacement under seis-
mic action between LFRS and GLRS allows the dissipation of energy through
elasto-plastic floor connectors. The design of such passive protection system
is posed as constrained optimization problem where the objective function to
be minimized is related to the total manufacturing cost of the devices. Con-
straints deal with the performance of the entire structural system, whereas
selected design variables are the link positions and their mechanical proper-
ties. Final results for a prototype 12-storey dual wall-frame reinforced con-
crete building have demonstrated its efficacy in reducing the damage due to
seismic loading. Specifically, the use of nonlinear connectors between LFRS
and GLRS has positive influence in reducing the damage severity of the floor
system and building contents due to excessive acceleration demand values.
Occasionally, it has been shown that this protection strategy is also able to
mitigate the structural damage of the LFRS by reducing its drift values. An
increment of the GLRS drift values is also observed with respect to tradi-
tional cast-in-situ rigid connections between LFRS and GLRS. This negative
effect has to be taken into account by enhancing the ductility of the GLRS
through proper reinforcement details. Indeed, the definition of GLRS is no
longer literally appropriate since a certain amount of the horizontal forces is
transmitted from the LFRS to the GLRS through the floor connectors. On
the other hand,the most of the shear capacity still relies on the larger stiff-
ness of the shear wall. Therefore, the conceptual separation into LFRS and
GLRS seems still acceptable. A consequence of the lateral drift experienced
by the GLRS is the need of considering the P-Delta effects for the ground
storey columns. At the foundation level, an increment of the drift demand
for the ground storey, together with the presence of gravity loads, will cause
an increment of the flexural demand.

An important issue for this work is the numerical resolution of the opti-
mization problem. It is worth noting that most researches adopt simplified
assumptions in the optimum design of seismic protection systems, e.g. linear
(or linearized) shear-type systems under random vibrations. This kind of
simplification has not been assumed here, and the final constrained optimum
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design of the force-limiting floor anchorage system is supported by nonlinear
dynamic analyses. An analytical closed form design solution is no longer pos-
sible under such assumptions. Therefore, a numerical optimization procedure
has been implemented in MATLAB whereas the OpenSees platform has been
used to perform nonlinear dynamic analyses. On rejecting the hypothesis of
linear behavior, the final computational time grows drastically. However, the
adopted optimization procedure based on the (µ+λ)-constrained differential
evolution algorithm has proved to be efficient.
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