31 research outputs found

    Cross-shelf and seasonal variation in larval fish assemblages on the southeast United States continental shelf off the coast of Georgia

    Get PDF
    Seasonal and cross-shelf patterns were investigated in larval fish assemblages on the continental shelf off the coast of Georgia. The influence of environmental factors on larval distributions also was examined, and larval transport processes on the shelf were considered. Ichthyoplankton and environmental data were collected approximately every other month from spring 2000 to winter 2002. Ten stations were repeatedly sampled along a 110-km cross-shelf transect, including four stations in the vicinity of Gray’s Reef National Marine Sanctuary. Correspondence analysis (CA) on untransformed community data identified two seasonal (warm weather [spring, summer, and fall] and winter) and three cross-shelf larval assemblages (inner-, mid-, and outer-shelf ). Five environmental factors (temperature, salinity, density, depth of the water column, and stratification) were related to larval cross-shelf distribution. Specifically, increased water column stratification was associated with the outer-shelf assemblage in spring, summer, and fall. The inner shelf assemblage was associated with generally lower temperatures and lower salinities in the spring and summer and higher salinities in the winter. The three cross-shelf regions indicated by the three assemblages coincided with the location of three primary water masses on the shelf. However, taxa occurring together within an assemblage were transported to different parts of the shelf; thus, transport across the continental shelf off the coast of Georgia cannot be explained solely by twodimensional physical factors

    Juvenile fish assemblages collected on unconsolidated sediments of the southeast United States continental shelf

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Fishery Bulletin 104 (2006): 256-277.Patterns were investigated in juvenile fish use of unconsolidated sediments on the southeast United States continental shelf off Georgia. Juvenile fish and environmental data were sampled at ten stations along a 110-km cross-shelf transect, including four stations surrounding Gray’s Reef National Marine Sanctuary (Gray’s Reef NMFS). Cross-shelf stations were sampled approximately quarterly from spring 2000 to winter 2002. Additional stations were sampled on three transects inshore of Gray’s Reef NMS and four transects offshore of the Sanctuary during three cruises to investigate along-shelf patterns in the juvenile fish assemblages. Samples were collected in beam trawls, and 121 juvenile taxa, of which 33 were reef-associated species, were identif ied. Correspondence analysis on untransformed juvenile fish abundance indicated a cross-shelf gradient in assemblages, and the station groupings and assemblages varied seasonally. During the spring, fall, and winter, three cross-shelf regions were identified: inner-shelf, mid-shelf, and outer-shelf regions. In the summer, the shelf consisted of a single juvenile fish assemblage. Water depth was the primary environmental variable correlated with cross-shelf assemblages. However, salinity, density, and water column stratification also correlated with the distribution of assemblages during the spring, fall, and winter, and along with temperature likely inf luenced the distribution of juvenile fish. No along-shelf spatial patterns were found in the juvenile fish assemblages, but the along-shelf dimension sampled was small (~60 km). Our results revealed that a number of commercially and recreationally important species used unconsolidated sediments on the shelf off Georgia as juvenile habitat. We conclude that management efforts would be improved through a greater recognition of the importance of these habitats to fish production and the interconnectedness of multiple habitats in the southeast U.S. continental shelf ecosystem.Gray’s Reef National Marine Sanctuary, the National Marine Sanctuary Office, and Center for Coastal Fisheries and Habitat Research provided funding for the project

    Support for the Slope Sea as a major spawning ground for Atlantic bluefin tuna: evidence from larval abundance, growth rates, and particle-tracking simulations

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hernandez, C. M., Richardson, D. E., Rypina, I. I., Chen, K., Marancik, K. E., Shulzitski, K., & Llopiz, J. K. Support for the Slope Sea as a major spawning ground for Atlantic bluefin tuna: evidence from larval abundance, growth rates, and particle-tracking simulations. Canadian Journal of Fisheries and Aquatic Sciences, 79(5), (2021): 814-824, https://doi.org/10.1139/cjfas-2020-0444.Atlantic bluefin tuna (Thunnus thynnus) are commercially and ecologically valuable, but management is complicated by their highly migratory lifestyle. Recent collections of bluefin tuna larvae in the Slope Sea off northeastern United States have opened questions about how this region contributes to population dynamics. We analyzed larvae collected in the Slope Sea and the Gulf of Mexico in 2016 to estimate larval abundance and growth rates and used a high-resolution regional ocean circulation model to estimate spawning locations and larval transport. We did not detect a regional difference in growth rates, but found that Slope Sea larvae were larger than Gulf of Mexico larvae prior to exogenous feeding. Slope Sea larvae generally backtracked to locations north of Cape Hatteras and would have been retained within the Slope Sea until the early juvenile stage. Overall, our results provide supporting evidence that the Slope Sea is a major spawning ground that is likely to be important for population dynamics. Further study of larvae and spawning adults in the region should be prioritized to support management decisions.Ship time was supported by NOAA, the Bureau of Ocean Energy Management, and the US Navy through interagency agreements for Atlantic Marine Assessment Program for Protected Species (AMAPPS). CMH and JKL received funding from the Woods Hole Oceanographic Institution’s Ocean Life Institute (#13080700) and Academic Programs Office. CMH was additionally supported by the Adelaide and Charles Link Foundation and the J. Seward Johnson Endowment in support of the Woods Hole Oceanographic Institution’s Marine Policy Center. IIR, KC, and JKL were supported by a US National Science Foundation (NSF) grant (OCE-1558806). JKL was additionally supported by the Lenfest Fund for Early Career Scientists and the Early Career Scientist Fund at Woods Hole Oceanographic Institution

    Identification of larval sea basses (Centropristis spp.) using ribosomal DNA-specific molecular assays

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Fishery Bulletin 106 (2008): 183-193.The identification of sea bass (Centropristis) larvae to species is difficult because of similar morphological characters, spawning times, and overlapping species ranges. Black sea bass (Centropristis striata) is an important fishery species and is currently considered to be overfished south of Cape Hatteras, North Carolina. We describe methods for identifying three species of sea bass larvae using polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) assays based on species-specific amplification of rDNA internal transcribed spacer reg ions. The assays were tested against DNA of ten other cooccurring reef fish species to ensure the assay’s specificity. Centropristis larvae were collected on three cruises during cross-shelf transects and were used to validate the assays. Seventysix Centropristis larvae were assayed and 69 (91%) were identified successfully. DNA was not amplified from 5% of the larvae and identification was inconclusive for 3% of the larvae. These assays can be used to identify sea bass eggs and larvae and will help to assess spawning locations, spawning times, and larval dispersal.Collection of larvae at sea was supported by funding from the National Science Foundation through OCE 9876565 to C. Jones, S. Thorrold, A. Valle-Levinson, and J. Hare. Additional funding for this project was provided by Office of National Marine Sanctuaries and by Grays Reef National Marine Sanctuary

    A Vulnerability Assessment of Fish and Invertebrates to Climate Change on the Northeast U.S. Continental Shelf

    Get PDF
    Climate change and decadal variability are impacting marine fish and invertebrate species worldwide and these impacts will continue for the foreseeable future. Quantitative approaches have been developed to examine climate impacts on productivity, abundance, and distribution of various marine fish and invertebrate species. However, it is difficult to apply these approaches to large numbers of species owing to the lack of mechanistic understanding sufficient for quantitative analyses, as well as the lack of scientific infrastructure to support these more detailed studies. Vulnerability assessments provide a framework for evaluating climate impacts over a broad range of species with existing information. These methods combine the exposure of a species to a stressor (climate change and decadal variability) and the sensitivity of species to the stressor. These two components are then combined to estimate an overall vulnerability. Quantitative data are used when available, but qualitative information and expert opinion are used when quantitative data is lacking. Here we conduct a climate vulnerability assessment on 82 fish and invertebrate species in the Northeast U.S. Shelf including exploited, forage, and protected species. We define climate vulnerability as the extent to which abundance or productivity of a species in the region could be impacted by climate change and decadal variability. We find that the overall climate vulnerability is high to very high for approximately half the species assessed; diadromous and benthic invertebrate species exhibit the greatest vulnerability. In addition, the majority of species included in the assessment have a high potential for a change in distribution in response to projected changes in climate. Negative effects of climate change are expected for approximately half of the species assessed, but some species are expected to be positively affected (e.g., increase in productivity or move into the region). These results will inform research and management activities related to understanding and adapting marine fisheries management and conservation to climate change and decadal variability

    Larval fish assemblages of the Georgia bight

    No full text

    Long-Term Changes in the Distributions of Larval and Adult Fish in the Northeast U.S. Shelf Ecosystem

    No full text
    <div><p>Many studies have documented long-term changes in adult marine fish distributions and linked these changes to climate change and multi-decadal climate variability. Most marine fish, however, have complex life histories with morphologically distinct stages, which use different habitats. Shifts in distribution of one stage may affect the connectivity between life stages and thereby impact population processes including spawning and recruitment. Specifically, many marine fish species have a planktonic larval stage, which lasts from weeks to months. We compared the spatial distribution and seasonal occurrence of larval fish in the Northeast U.S. Shelf Ecosystem to test whether spatial and temporal distributions changed between two decades. Two large-scale ichthyoplankton programs sampled using similar methods and spatial domain each decade. Adult distributions from a long-term bottom trawl survey over the same time period and spatial area were also analyzed using the same analytical framework to compare changes in larval and adult distributions between the two decades. Changes in spatial distribution of larvae occurred for 43% of taxa, with shifts predominately northward (i.e., along-shelf). Timing of larval occurrence shifted for 49% of the larval taxa, with shifts evenly split between occurring earlier and later in the season. Where both larvae and adults of the same species were analyzed, 48% exhibited different shifts between larval and adult stages. Overall, these results demonstrate that larval fish distributions are changing in the ecosystem. The spatial changes are largely consistent with expectations from a changing climate. The temporal changes are more complex, indicating we need a better understanding of reproductive timing of fishes in the ecosystem. These changes may impact population productivity through changes in life history connectivity and recruitment, and add to the accumulating evidence for changes in the Northeast U.S. Shelf Ecosystem with potential to impact fisheries and other ecosystem services.</p></div

    <i>A priori</i> expectations and results for change in spatial distribution and seasonal occurrence of larval fish in the Northeast U.S. Shelf Ecosystem.

    No full text
    <p>Based on recent meta-analyses [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0137382#pone.0137382.ref034" target="_blank">34</a>], studies from other regions [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0137382#pone.0137382.ref021" target="_blank">21</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0137382#pone.0137382.ref022" target="_blank">22</a>] and studies in the Northeast U.S. Shelf Ecosystem [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0137382#pone.0137382.ref004" target="_blank">4</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0137382#pone.0137382.ref032" target="_blank">32</a>], we developed several <i>a priori</i> expectations.</p

    Percent frequency of occurrence of directional shifts in distribution among taxa by life stage and regions of the Northeast U.S. Shelf Ecosystem.

    No full text
    <p>Occurrence of each type of distributional shift among larvae (A) and spring- (B) and fall-collected adults (C) were grouped by taxa that occurred primarily in the Mid-Atlantic Bight to Georges Bank (MAB to GB), Southern New England to Gulf of Maine (SNE to GOM), and Georges Bank to Gulf of Maine (GB to GOM) to examine patterns in relation to regional occurrence.</p
    corecore