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The study of larval fish assemblages 
provides information on community 
structure, spawning, and larval 
transport. Larval fish assemblages 
are groups of larvae with similar 
temporal and spatial distributions 
(Cowen et al., 1993). Larval distribu-
tion patterns are initially determined 
by spawning time and location; larvae 
of species with similar spawning pat-
terns are initially in the same larval 
assemblage (Rakocinski et al., 1996). 
Physical forcing and larval behavior 
then modify the structure of larval 
assemblages and ultimately deter-
mine the outcome of larval transport 
(Cowen et al., 1993; Smith et al., 1999; 
Hare et al., 2001).

Marine protected areas (MPAs) are 
portions of the marine environment 
designated to “provide lasting protec-
tion for part or all of the natural and 
cultural resources therein” (Federal 
Register, 2000). A number of specific 
conservation objectives are encom-
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passed by this definition, such as 
protecting small areas with histori-
cal significance or aesthetic quality, 
or protecting much larger areas to 
enhance fisheries through increases 
in spawning stock biomass and the 
supply of recruits to surrounding ar-
eas (Crowder et al., 2000). However, 
whether an MPA provides recruits 
to other areas is difficult to quantify 
and involves determining the fate 
of larvae and juveniles spawned in 
a protected area (Stephenson, 1999; 
Warner et al., 2000).

MPAs are under consideration as 
a fisheries management tool on the 
southeast United States continental 
shelf (Plan Development Team, 1990), 
and larval assemblage studies would 
provide useful information regard-
ing spawning and larval transport. 
Although substantial larval fish re-
search has been conducted on the 
southeast U.S. continental shelf, no 
studies have examined the dynamics 

Abstract — Seasonal and cross-shelf 
patterns were investigated in larval 
fish assemblages on the continental 
shelf off the coast of Georgia. The 
influence of environmental factors on 
larval distributions also was exam-
ined, and larval transport processes 
on the shelf were considered. Ichthyo-
plankton and environmental data were 
collected approximately every other 
month from spring 2000 to winter 
2002. Ten stations were repeatedly 
sampled along a 110-km cross-shelf 
transect, including four stations in 
the vicinity of Gray’s Reef National 
Marine Sanctuary. Correspondence 
analysis (CA) on untransformed com-
munity data identified two seasonal 
(warm weather [spring, summer, and 
fall] and winter) and three cross-shelf 
larval assemblages (inner-, mid-, and 
outer-shelf ) . Five environmental 
factors (temperature, salinity, den-
sity, depth of the water column, and 
stratification) were related to larval 
cross-shelf distribution. Specifically, 
increased water column stratification 
was associated with the outer-shelf 
assemblage in spring, summer, and 
fall. The inner shelf assemblage was 
associated with generally lower tem-
peratures and lower salinities in the 
spring and summer and higher salini-
ties in the winter. The three cross-
shelf regions indicated by the three 
assemblages coincided with the loca-
tion of three primary water masses 
on the shelf. However, taxa occurring 
together within an assemblage were 
transported to different parts of the 
shelf; thus, transport across the con-
tinental shelf off the coast of Georgia 
cannot be explained solely by two-
dimensional physical factors.
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of larval fish assemblages in this area. For example, 
during the RV Dolphin cruises, the Marine Resources 
Monitoring, Assessment, and Prediction (MARMAP) 
cruises, and the Southeast Area Monitoring and As-
sessment Program (SEAMAP) cruises, ichthyoplankton 
surveys were conducted on the southeast United States 
continental shelf. From these surveys, spawning time 
was defined for a large group of species (Fahay, 1975), 
and the temporal and spatial distribution of larvae 
were described for a few select species (Kendall and 
Walford, 1979; Collins and Stender, 1987; 1989; Smith 
et al., 1994) and for multiple taxa, but mostly at the 
family level (Powles and Stender, 1976). Similarly, other 
programs (e.g., the South Atlantic Bight Recruitment 
Experiment) examined spawning and larval transport 
of “estuarine-dependent” species such as Atlantic men-
haden (e.g., Judy and Lewis, 1983; Hoss et al., 1997; 
Hare et al., 1999; Checkley et al., 1999), but results for 
the entire suite of species sampled were not reported. 
For studies where the broader community of larval fish 
on the southeast U.S. shelf was addressed, the structure 
and dynamics of larval assemblages were not defined 
(Powell and Robbins, 1994, 1998; Govoni and Spach, 
1999; Powell et al., 2000). 

The purpose of this study was to examine larval fish 
assemblages on the continental shelf off the coast of 
Georgia, USA. This region of the continental shelf was 
targeted because of 1) the nature of the broad shallow 
shelf, 2) the location of Gray’s Reef National Marine 
Sanctuary 20 km from shore, and 3) the location of sev-
eral proposed deepwater MPAs (70−200 m water depth) 
in the region. Temporal and spatial patterns in larval 
distributions were described to explain spawning and 
larval transport processes on the continental shelf off 
the coast of Georgia, and the implications for MPAs in 
the region were addressed.

Materials and methods

Study site

The southeast United States continental shelf extends 
from West Palm Beach, Florida, to Cape Hatteras, North 
Carolina. Moving north from West Palm Beach (15 km), 
the shelf widens to Georgia (200 km) and then narrows 
to Cape Hatteras (35 km). Physical forcing by the Gulf 
Stream, which is part of the North Atlantic Western 
Boundary Current system, varies along the shelf. As 
the Gulf Stream flows northward along the shelf edge, it 
meanders, and cyclonic frontal eddies form in meander 
troughs (Lee et al., 1991). Meanders and frontal eddies 
grow in dimension from just north of the Straits of Florida 
(27°N latitude) to St. Augustine, Florida (30°N latitude), 
and then decrease from St. Augustine to just south of 
Charleston, South Carolina (32°N latitude). Meanders and 
frontal eddies grow in dimension again downstream of the 
Charleston Bump (32−33°N latitude), and then decrease 
again from Cape Fear, North Carolina (33°N latitude), to 
Cape Hatteras, North Carolina (36°N latitude). 

In addition to along-shelf variation in geophysical 
structure and Gulf Stream forcing, the southeast Unit-
ed States continental shelf can be divided into three 
cross-shelf zones based on physical circulation dynamics 
(Boicourt et al., 1998). Circulation on the inner-shelf 
(0−20 m water depth) is influenced by tidal currents, 
river inflow, and wind (Atkinson and Menzel, 1985; Pi-
etrafesa et al., 1985a). Wind-driven flow predominates 
on the mid-shelf (20−40 m water depth) and there is 
only minor Gulf Stream and tidal inf luence (Atkin-
son and Menzel, 1985). Flow on the outer-shelf (40−75 
m water depth) is dominated by the passage of Gulf 
Stream frontal eddies and upwelling at the shelf break 
(Pietrafesa et al., 1985b). 

Inner and mid-shelf physical processes are relatively 
more important off the coast of Georgia compared to 
other segments of the southeast United States conti-
nental shelf (Boicourt et al., 1998). The continental 
shelf off the coast of Georgia is the area of diminish-
ing meanders and eddies from St. Augustine, Florida, 
to Charleston, South Carolina. Tidal range and fresh-
water inflow is greatest in the Georgia portion of the 
southeast shelf (Atkinson and Menzel, 1985). Further, 
because the shelf is widest off the coast of Georgia (ap-
proximately 200 km), the Gulf Stream is less influential 
on mid- and inner-shelf dynamics compared to the rest 
of the southeast United States continental shelf (Lee 
et al., 1991). 

Collection of larval fish and CTD data

Ichthyoplankton sampling was conducted approximately 
every other month from April 2000 through February 
2002 (Table 1). A maximum of ten stations, approxi-
mately 18.5 km apart, were sampled during each cruise. 
Stations were missed on some cruises owing to weather 
and equipment failure. The transect was 110 km long 
and spanned 10 to 50 m water depth (Fig. 1). Four sta-

Table 1
Year, month, and season of ichthyoplankton sampling  
and number of stations sampled in the Georgia Bight 
region of the southeast United States continental shelf.

Year Month Season Number of stations

2000 April spring 4

2000 August summer 8

2000 October fall 7

2001 January winter 8

2001 March winter 8

2001 May spring 7

2001 June summer 7

2001 August summer 10

2001 October fall 8

2002 February winter 10
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Figure 1
Map of the study area and the cross-shelf transect used for sampling larval abundance 
and environmental data bimonthly from April 2000 to February 2002 (see Table 1). 
Four stations (stations 2.1−2.4) were located around Gray’s Reef National Marine 
Sanctuary.
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tions were placed immediately adjacent to the four sides 
of Gray’s Reef National Marine Sanctuary. At each 
station, temperature, salinity, density, and water depth 
were measured from the water’s surface to one meter 
above the bottom with a Seabird conductivity-tempera-
ture-depth (CTD probe (SBE19, Seabird Electronics, Inc., 
Bellevue, WA). Ichthyoplankton was collected at each sta-
tion with a five-minute single oblique net tow to within 
one meter of the bottom. For all but one cruise (August 
2000), a 61-cm paired bongo frame fitted with 333-μm 
or 505-μm mesh nets was used. During the remain-
ing cruise, a 1-m ichthyoplankton sled with 333-μm  
mesh net was used because of the smaller size of the 
research vessel. A flow meter (General Oceanica) was 
used to measure the volume of water filtered.

A gear comparison study, conducted during October 
2000, showed that ichthyoplankton samples collected 
with the two gear types (61-cm bongo versus 1-m2 ich-
thyoplankton sled) were similar. An analysis of variance 
(ANOVA) on the mean larval concentration revealed no 
significant differences between the two gear types (one-
way ANOVA: F=0.489; df=1; P>0.5). Also, an analysis 
of similarities (ANOSIM, Clarke and Warwick, 2001) 
determined that the community structure varied more 
within than between gear types (ANOSIM: R=−0.11; 
S=77.57). Similarly, preliminary analysis of the effect 

of gear selectivity due to mesh size indicated that the 
larval communities collected by 333-μm mesh and by 
505-μm mesh nets were similar. Thus, data from all 
cruises were combined in the subsequent analyses (see 
Marancik, 2003, for more details). 

Preparation of ichthyoplankton data

All ichthyoplankton samples were sorted and larval fish 
were identified to the lowest possible taxonomic level 
by using previously published descriptions (e.g., Fahay, 
1983; Johnson and Keener, 1984; Richards, 2001) and 
descriptions developed as part of this study. Identifica-
tion to species was not easy given the diversity of spe-
cies along the southeast United States continental shelf 
(see Kendall and Matarese, 1994), yet every effort was 
made to identify larvae to species-level (46.3% to species, 
27.4% to genus, 6.7% unidentified). Larval concentra-
tions were calculated as number of larvae/100 m3. 

Two data sets were used for statistical analyses, dif-
fering in the inclusion of rare taxa. Rare taxa pose a 
problem in community analyses. Some rare taxa occur 
because of transport anomalies (Cowen et al., 1993), 
and their inclusion in data analyses can confound the 
definition of larval assemblages. However, rare taxa can 
also be indicative of consistent, but low larval abun-
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Table 2
Taxa collected during two years of sampling (April 2000–February 2002) constituting one or ten percent of any one sample from 
the continental shelf off the coast of Georgia and included in the analyses. The taxonomic codes used in the figures of this article 
are also shown. Taxa included in the one percent and ten percent data sets are marked by an “X.” Also indicated are the seasonal 
assemblage (warm weather [WA] and winter [WI]) and larval assemblage (I=inner-shelf, M=mid-shelf, O=outer-shelf) in which 
larvae were collected (based on correspondence analyses).

   Included in Included in
Family Species Taxonomic code 1% data set 10% data set Season Assemblage

Muraenidae Gymnothorax sp.  X  WA/WI I/O

Ophichthidae Ophichthus sp.  X  WA/WI M/O

 Myrophis punctatus Mpun X X WI M

Clupeidae Brevoortia tyrannus Btyr X X WI M

 Etrumeus teres  X  WI O

 Opisthonema oglinum Oogl X X WA I/O

Engraulidae Anchoa hepsetus Ahep X X WA I/M

 Engraulis eurystole  X  WA O

Gonostomatidae Cyclothone spp.  X  WA O

Phosichthyidae Vinciguerria nimbaria  X  WA O

Paralepidae Lestidium atlanticum  X  WI O

Myctophidae Diaphus spp.  X  WA/WI M/O

 Lepidophanes spp.  X  WA O

 Ceratoscopelus maderensis  X  WA/WI M/O

 Ceratoscopelus warmingii  X  WI M

 Electrona risso  X  WI O

 Hygophum hygemii  X  WI O

 Hygophum reinhardtii  X  WA O

 Lampadena urophaos  X  WA M

 Myctophum affini  X  WA O

 Myctophum selenops  X  WA O

Bregmacerotidae Bregmaceros atlanticus  X  WA O

 Bregmaceros cantori  X  WA/WI I/O

 Bregmaceros houdei  X  WA/WI M

Gadidae Urophycis sp.  X  WI M

Ophidiidae Ophidion antipholus/holbrooki  X  WA/WI I/M

 Ophidion josephi  X  WA/WI I/O

 Ophidion marginatum Omar X X WA M

 Ophidion selenops  X  WA M

 Otophidium omostigmum Oomo X X WA/WI M

Holocentridae Holocentridae  X  WA O

Syngnathidae Hippocampus sp.  X  WA I

 Syngnathus fuscus/louisianae  X  WA I

 Syngnathus louisianae  X  WA I

Scorpaenidae Scorpaenidae  X  WA/WI M/O

continued

dance (Leis, 1989); excluding these taxa could remove 
data useful in defining larval assemblages. Thus, two 
taxa inclusion data sets were selected. The first data set 
comprised taxa that made up greater than one percent 
abundance at any one station, and the second data set 
included those taxa that made up at least 10 percent 
abundance at any one station (Table 2).

The data sets were further truncated by eliminating, 
with a few exceptions, all taxa not identified to genus 
or species level. Priacanthidae, Scaridae, Scorpaenidae, 
and Epinephalinae were included because, despite po-
tential inclusion of multiple species, these larvae rep-
resent some of the only reef taxa collected, and larval 
assemblage data including these taxa would be useful 
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Table 2 (continued)

   Included in Included in
Family Species Taxonomic code 1% dataset 10% dataset Season Assemblage

Serranidae Epinephalinae  X  WA/WI M/O
 Serraninae  X  WA/WI M/O
 Diplectrum spp.  X  WA/WI I/M/O
 Hemanthias vivanus  X  WA O
 Serraniculus pumilio  X  WA M
Priacanthidae Priacanthidae  X  WA M/O
Pomatomidae Pomatomus saltatrix  X  WA O
Carangidae Elagatus bipinnulata  X  WA M/O
Coryphaenidae Coryphaena hippurus  X  WA I/O
Lutjanidae Lutjanus sp.  X  WA O
 Rhomboplites aurorubens  X  WA O
Sparidae Lagodon rhomboides Lrho X X WI I
Sciaenidae Bairdiella chrysura  X  WA I
 Cynoscion nothus  X  WA I/M
 Cynoscion regalis  X  WA I
 Larimus fasciatus  X  WA I/M
 Leiostomus xanthurus Lxan X X WI I/M
 Menticirrhus americanus Mame X X WA I
 Micropogonias undulatus Mund X X WA/WI I/M
 Pogonias cromis  X  WA I
 Sciaenops ocellatus  X  WA I
Pomacentridae Abudefduf sp.  X  WA O
 Chromis spp.  X  WA O
Mugilidae Mugil curema  X  WI M
Labridae Halichoeres sp.  X  WA/WI M
 Xyrichthys spp. Xyr X X WA M/O
Scaridae Scaridae  X  WA/WI I/M/O
Dactyloscopidae Dactyloscopidae type 1 (D. moorei)  X  WA I
 Dactyloscopidae type 2  X  WA M
 Dactyloscopidae type 3  X  WA/WI O
Callionymidae Diplogrammus pauciradiatus Dpau X X WA/WI M
Scombridae Euthynnus alletteratus  X  WA O
 Scomberomorus cavalla  X  WA O
 Scomberomorus maculatus  X  WA I
 Auxis rochei Aroc X X WA O
 Scomber japonicus  X  WA/WI M/O
Stromateidae Ariomma sp.  X  WA/WI M/O
Bothidae Bothus ocellatus/robinsi Boce X X WA/WI M/O
Paralichthyidae Cyclopsetta sp.  X  WA/WI M/O
 Engyophrys spp.  X  WA O
 Syacium spp.  X  WA M/O
 Paralichthys albiguta/lethostigma  X  WI O
 Citharichthys arctifrons  X  WI I
 Citharichthys cornutus  X  WA O
 Citharichthys gymnorhinus  X  WA/WI I/M/O
 Citharichthys spilopterus Cspi X X WI M
 Etropus crossotus Ecro X X WA M
 Hippoglossina oblongatta  X  WA M
 Paralichthys lethostigma  X  WI M
Soleidae Trinectes maculatus  X  WA I
Balistidae Monocanthus hispidus  X  WA O
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for managing reef fish on the southeast United States 
continental shelf (see Powell and Robbins, 1994; 1998). 
Serraninae were also included because the majority of 
these larvae are likely one type: Serranus subligarius. 
In contrast, larvae identified to some genera were ex-
cluded because there are multiple species common in 
the area within each genus, and each species likely 
has different larval distributions: Etropus spp. (3 spe-
cies), Prionotus spp. (14 species), Sphoeroides spp. (11 
species), Symphurus spp., (22 species), and Syngnathus 
spp. (10 species). In summary, 86 taxa were included in 
the one percent data set, and 16 taxa were included in 
the ten percent data set (Table 2). 

Preparation of environmental data

Season, water mass, and eight environmental variables 
(mostly derived from temperature and salinity data) 
were chosen in an attempt to explain variation in the 
ichthyoplankton data (Table 3). For subsequent use in 
multivariate analyses, all environmental variables were 
standardized to a mean of zero and a standard devia-
tion of one. 

CTD data were processed with the manufacturer’s 
software (Seasave vers. 5.3, Seabird Electronics, Inc., 
Bellevue, WA) and averaged into 0.5-m bins. Two pa-
rameters were derived to describe each hydrographic 
variable (salinity, temperature, density): an average 
value through the entire water column and a horizontal 
gradient value (calculated as the difference in value 
between the two adjacent stations). Vertical stratifica-
tion was estimated by using Simpson’s stratification 
parameter (Simpson and James, 1986):

Φ = −
−
∫1
0

/ ( ) ,h gzdz
h

ρ ρ

where h = water column depth;
 ρ = average water column density;
 ρ = water density; 
 g = acceleration due to gravity; and 
 z = depth. 

The stratification parameter, Φ (jowles/m3), is a measure 
of the resistance of water to mixing; higher numbers 
signify higher resistance to mixing.

Temperature and salinity data were further used to 
define water masses on the continental shelf off the 
coast of Georgia. Pietrafesa et al. (1994) defined four wa-
ter masses on the southeast U.S. continental shelf: Geor-
gia Bight Water, Carolina Capes Water, Virginia Coastal 
Water, and Gulf Stream Water. However, temperature 
data collected on the continental shelf off the coast of 
Georgia exhibited greater seasonal variability (10−29°C) 
than reported by Pietrafesa et al. (1994; 14−29°C). As 
a result, water mass definitions for our study, although 
based largely on the definitions of Pietrafesa et al. 
(1994), reflect the greater range of temperature and 
reflect the natural breaks in temperature, salinity, and 
stratification data. Specifically, two water masses (inner-
shelf water and mid-shelf water) and two mixes (inner-
shelf–mid-shelf mixed water and mid-shelf–Gulf Stream 
mixed water) were defined (Fig. 2). Inner-shelf water was 
characterized by salinities <35 ppt and seasonally vari-
able temperatures. This water mass was found during 
winter and spring and was distributed inside the 20-m  
isobath (Fig. 3). Mid-shelf water, with salinities >36 
(Fig. 2), was typically well mixed vertically (Simpson’s 
stratification parameter value <10). Mid-shelf water 
was found year round over large sections of the shelf, 
particularly in the fall (Fig. 3). A mixture between in-
ner-shelf and mid-shelf water was defined with salinities 
between 35 and 36 (Fig. 2). A mixture was also defined 

Table 3
Mean values for each station (station 2 is the average of stations 2.1−2.4) of the sixteen environmental variables used in canonical 
correspondence analysis to determine which environmental variables were most significantly linked to the larvae of the Georgia 
Bight. Temperature, salinity, and density gradients are horizontal gradients based on the difference between adjacent stations. 
Stratification of the water column was calculated by using Simpson’s stratification parameter and is a measure of vertical change 
in density.

 Station

Environmental variables Code 1 2 3 4 5 6 7

Depth (m) DEP 12.44 18.51 23.15 33.05 37.03 41.48 45.94

Average temperature (°C) AVGTEM 19.51 20.76 21.67 22.33 21.97 22.73 23.10

Temperature gradient (°C) TEMGRAD −0.29 −0.67 −1.10 −0.82 −0.52 −1.33 −0.59

Average salinity AVGSAL 34.78 35.70 36.11 36.32 36.35 36.30 36.24

Salinity gradient SALGRAD −0.88 −1.13 −0.56 −0.25 0.03 0.12 0.19

Average density (kg/m3) AVGDEN 24.56 24.97 25.04 25.05 25.18 24.92 24.79

Density gradient (kg/m3) DENGRAD −0.64 −0.74 −0.18 0.01 0.16 0.44 0.31

Stratification STRAT 3.10 1.47 3.37 6.19 13.41 42.41 98.44
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Figure 2
The average temperature and salinity for each station; symbols used represent 
the water mass designation for each station. The black polygons represent the 
temperature and salinity boundaries (data for all seasons bounded by one polygon) 
of three water masses defined by Pietrafesa et al. (1994; Georges Bight water; 
Carolina Capes water, and Gulf Stream water). Four water masses were defined 
in our study (inner-shelf water, inner-shelf–mid-shelf water, mid-shelf water, and 
mid-shelf–Gulf Stream mixed water).
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as mid-shelf water and Gulf Stream water (Fig. 2). Gulf 
Stream water was not encountered, but its temperature 
and salinity properties are well documented (Churchill 
et al., 1993; Pietrafesa et al., 1994). Mid-shelf–Gulf 
Stream mixed water was highly stratified (Simpson’s 
stratification parameter value >10), with warm highly 
saline water intruding on the surface during fall, win-
ter, and spring and cool highly saline water intruding 
at depth during summer. Mid-shelf–Gulf Stream mixed 
water was encountered on most cruises and was found 
farthest offshore (Fig. 3). 

Cruises were assigned to one of four seasons (Ta-
ble 1) based on wind and temperature regimes. Al-
though Blanton et al. (1985) identified five seasons for 
the southeast United States based on wind regimes 
(Spring [March−May], summer [June−July], transition 
[August], autumn [September−October], and winter 
[November−February]), the temperature data collected 
in our study supported classifying both August cruises 
as summer and the March cruise as winter.

Data analyses

Multivariate analyses were used to define larval assem-
blages and to explore the factors that influence distri-
bution of larval assemblages on the continental shelf 
off the coast of Georgia. Multivariate analyses arrange 
sites and species along environmental gradients creating 
a low dimensional map (an ordination). Analyses can 
be conducted for samples where the distance between 
points in the ordination represents the similarity of 
species abundance between samples. Analyses also can 
be conducted for species where the distance between 

points in the ordination represents the similarity in the 
sample distribution between species. Ordinations, then, 
can be analyzed in two ways: with regard to proximity 
and dimensionality. Points that occur in close proximity 
can be considered similar based on similar composition. 
Points that occur on the same dimension define gradients 
in the data. 

The effects of data transformation (untransformed, 
square root transformed, and fourth root transformed) 
and species inclusions (1% and 10% data sets) on the 
ordination of community and environmental data by 
two multivariate ordination techniques, multidimen-
sional scaling and correspondence analysis (CA), were 
compared to determine which method was more effec-
tive at analyzing the larval fish data collected on the 
continental shelf off the coast of Georgia (Marancik, 
2003). Overall, the two analytical methods produced 
similar ordinations and were robust to the inclusion of 
rare species and to the type of data transformation. 

Correspondence analysis on untransformed larval 
fish concentration data was used to define larval as-
semblages in relation to season and the entire two-year 
data set. One of the strengths of CA is that it allows 
one to plot analyses of species and station data simul-
taneously on one ordination, thereby, allowing immedi-
ate comparisons between those stations that occur in 
close proximity in ordination space and those taxa that 
influence that proximity. Eigenvalues are a measure 
of the importance of each CA dimension (ter Braak 
and Smilauer, 2002). Thus, the dimensions needed to 
describe patterns in the data can be determined by an 
abrupt drop in the magnitude of eigenvalues from one 
dimension to the next. 
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Figure 3
Water mass designations for each station for each cruise. Cruises within a season 
were put together in one map with transects offset from center: (A) spring, (B) 
summer, (C) fall, and (D) winter. Inner-shelf water was the least saline and found 
farthest inshore. Mid-shelf–Gulf Stream mixed water was a highly stratified mix 
of Gulf Stream water and mid-shelf water and was found farthest offshore.
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Canonical correspondence analysis (CCA), which in-
corporates environmental variables by aligning species 
and station data along environmental gradients, was 
used to explore the relationship between larval assem-
blages and the environment. The species-environment 
correlation is a measure of the strength of the rela-
tion between the species data and the environmental 
data for each CCA dimension (ter Braak and Smilauer, 
2002). The product of the species-environment correla-
tion and the eigenvalue can be used to describe the 
variance in the data. CA and CCA were performed by 
using the statistical package CANOCO (Ter Braak, 
1988).

Multivariate analyses were used to determine which 
fish species spawn on the continental shelf off the coast 
of Georgia, to examine what environmental factors in-
fluence larval distribution, and to explore the physical 
factors affecting the transport of larvae spawned on 
the shelf. Specifically, six objectives were addressed: 

1) cross-shelf patterns in the larval fish community; 2) 
larval assemblages associated with cross-shelf patterns 
in the larval fish community; 3) the relation among 
cross-shelf patterns in the larval fish community, larval 
assemblages, and environmental variables; 4) the rela-
tion between water mass and larval assemblages; 5) 
seasonal patterns in the larval fish community and lar-
val assemblages; and 6) the relation between seasonal 
larval assemblages and environmental variables. 

In addition to addressing the six specific objectives, 
the implications for larval transport were considered. 
By comparing the distributions of specific taxa to the 
patterns discerned by addressing the objectives above, 
some insights were gained into larval transport pro-
cesses. The distribution of taxa representative of each 
larval assemblage was examined for patterns through 
space and time. Mechanisms driving larval transport 
were then explored by linking these patterns to water 
mass and other environmental variables.
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Results

Two dimensions were sufficient to explain the majority of 
the variance in the larval concentration data (Table 4). 
The winter data eigenvalues indicated the relevance of 
a third dimension; yet, inspection of three dimensions 
did not define any patterns not indicated by the first 
two dimensions. Thus, two dimensions were analyzed for 
each season in both the CA and CCA analyses.

Cross-shelf patterns in the larval fish community

A cross-shelf pattern in the larval community was 
observed. In spring, summer, and fall, the inshore sta-
tions (stations 1−3) were in close proximity, forming an 
inner-shelf station group in the ordination resulting 
from the CA (Fig. 4). Along the same dimension (axis) 
as the inner-shelf group was a mid-shelf station group of 
stations 3−6 (stations 2.1−2.4 were also included in this 
group in spring, summer, and winter). An outer-shelf 
group composed of offshore stations (stations 5−7) was 
distributed along a nearly perpendicular dimension, and 
the mid-shelf group was at the intersection of the two 
dimensions (Fig. 4). Analysis of the one-percent species 
data set revealed an identical pattern for each season 
(not shown).

The winter station ordination resulted in a less dis-
tinct cross-shelf pattern (Fig. 4D). In January 2001, 
stations 1, 2, 3, and 6 were in the inner-shelf group; 
whereas, stations 4 and 7 from the same cruise were in 
the mid-shelf group, and station 5 was in the outer-shelf 
group. Some of this blurring of the cross-shelf pattern 
in the ordination may be explained by a lower total 
catch, giving the taxa found across the shelf (Brevoor-
tia tyrannus and Leiostomus xanthurus) more influence 
over the data. In addition, most of the variance was 
explained by the first dimension (Table 4), meaning that 
the separation of the outer-shelf group (stations 5 and 
6) from the mid- and inner-shelf groups is based on a 
weak relationship among the stations. 

Larval assemblages associated with cross-shelf patterns 
in the larval fish community

Three larval assemblages were defined that corre-
sponded to the three station groups (Fig. 5). The inner-
shelf assemblage was composed of species that spawn in 
coastal and estuarine habitats. Larvae in this assem-
blage were distributed within the 20-m isobath and con-
fined largely to stations classified as inner-shelf (Fig. 6). 
The inner-shelf assemblage was primarily represented 
by Menticirrhus americanus during spring, summer, 
and fall, and by Micropogonius undulatus and Lagodon 
rhomboides during winter (Table 5). Taxa included in 
the mid-shelf assemblage were generally found between 
the 20- and 40-m isobaths. Some mid-shelf taxa, how-
ever, were found across the shelf (stations 1−7) and a 
large percentage of the larvae occurring in each region 
were mid-shelf taxa (Fig. 6). The outer-shelf assemblage 
comprised offshore or deepwater spawned taxa and was 
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Figure 4
Correspondence analysis ordinations (portraying the first 
and second dimension scores) of the larval fish community 
data showing station groups in each season (A) spring,  
(B) summer, (C) fall, and (D) winter. Three cross-shelf sta-
tion groups were identified within each season. Solid lines 
enclose the boundary of each station group with three or more 
stations. Station groups comprising one or two stations are 
not enclosed by a solid line. Each station group is labeled and 
portrayed with a different symbol. The dashed lines intersect 
at the origin of the plot. Analyses were conducted with larval 
concentration data only. Data from each cruise within a season 
are shown together.
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Table 4
Eigenvalues and species-environment correlations (r2) for each axis analyzed (correspondence analysis [CA] and canonical cor-
respondence analysis [CAA]) by season and the entire year. A sharp drop in the eigenvalue marks the axes that explain most 
of the data. Species and environment correlations represent the strength of the relation between the species data and the envi-
ronmental data for each axis within each season. Values of zero denote no relation; values of one denote a perfect relation. The 
product of the species-environment correlation and the eigenvalue explains the variance in the data for CCA. Eigenvalues alone 
explain the variance in the data for CA. 

 CA axis CCA axis

Season 1 2 3 4 1 2 3 4

Spring
 Eigenvalue 0.932 0.674 0.348 0.107 0.89 0.631 0.329 0.068
 r2     0.98 0.969 0.969 0.796
Summer
 Eigenvalue 0.792 0.621 0.537 0.292 0.703 0.564 0.409 0.159
 r2     0.959 0.959 0.889 0.799
Fall
 Eigenvalue 0.738 0.544 0.273 0.106 0.707 0.443 0.228 0.053
 r2     0.983 0.909 0.935 0.946
Winter
 Eigenvalue 0.526 0.287 0.197 0.165 0.42 0.104 0.059 0.041
 r2     0.894 0.665 0.645 0.496
Year
 Eigenvalue 0.937 0.788 0.607 0.54 0.773 0.61 0.319 0.276
 r2     0.923 0.899 0.8 0.735

Table 5
Three cross-shelf larval assemblages (inner-shelf, mid-shelf, and outer-shelf) were persistent in the Georgia Bight with sea- 
sonal changes in membership. Shown are the assemblages from the ten-percent data set. “Bothus ocellatus/robinsi” means B. 
ocellatus and B. robinsi or one of either of them.

Season Inner Mid Outer

Spring Menticirrhus americanus Diplogrammus pauciradiatus Auxis rochei
  Otophidium omostigmum Opisthonema oglinum
  Bothus ocellatus/robinsi
  Xyrichthys spp.
  Micropogonias undulatus
  Etropus crossotus
  Anchoa hepsetus
Summer M. americanus D. pauciradiatus A. rochei
 O. oglinum O. omostigmum B. ocellatus/robinsi
  Ophidion marginatum
  Xyrichthys spp.
  E. crossotus
  M. undulatus
  A. hepsetus
Fall M. americanus D. pauciradiatus Xyrichthys spp.
 A. hepsetus M. undulatus B. ocellatus/robinsi
 O. marginatum E. crossotus
 Leiostomus xanthurus O. omostigmum
Winter M. undulatus B. tyrannus B. ocellatus/robinsi
 L. rhomboides M. punctatus
  C. spilopterus
  D. pauciradiatus
  O. omostigmum
  L. xanthurus
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Figure 5
Correspondence analysis (CA) ordinations (portraying the first 
and second dimension scores) of the larval fish community data 
showing species in each season: (A) spring, (B) summer, (C) fall, 
and (D) winter. A larval fish assemblage was associated with 
each cross-shelf station group. Each station group is outlined 
and labeled as in Figure 4. The dashed lines intersect at the 
origin of the plot. Analyses were conducted by using larval 
concentration data only. Refer to table 2 for definitions of larval 
taxa codes. Three larval fish assemblages were defined based 
on species association with station groups (see table 5).

found primarily at outer-shelf stations (Fig. 6). Auxis 
rochei and Bothus ocellatus/robinsi [where the slash (/) 
means “B. ocellatus and B. robinsi” or one of these spe-
cies] represented the outer-shelf assemblage (Table 5).

The region of the shelf with the highest species rich-
ness depended on the inclusion of rare taxa and season. 
With the exception of fall, species richness was highest 
in the mid-shelf group when only abundant taxa were 
included in analyses (Table 5, Fig. 7A). When rare taxa 
were included (the 1% data set), species richness was 
highest in the mid-shelf group during spring and sum-
mer and highest in the outer-shelf group during fall 
and winter (Fig. 7B). 

Relationship among cross-shelf patterns in  
the larval fish community, larval assemblages,  
and environmental variables

Five environmental variables were correlated to the cross-
shelf pattern in station groups and larval assemblages. 
Water density, salinity, temperature, depth, and strati-
fication of the water column had a significant relation 
to the structure of larval assemblages and the grouping 
of stations in the CCA (P<0.05 for each variable, Monte 
Carlo permutation test; Table 6). The species-environment 
correlation for the first two axes of the ordination was 
greater that 0.79, indicating a strong association between 
the environment and larval assemblages (Table  6).  
Although the portrayal of station groups and larval 
assemblages in ordination space was not identical when 
environmental data were included (compare Figs. 4 and 5 
to 8), the cross-shelf pattern in station groups and larval 
assemblages was maintained (Fig. 8).

The first CCA dimension, in all seasons, was most 
highly influenced by the depth, temperature, salinity, and 
density of the water (Fig. 8). In spring, summer, and win-
ter, the mid- and outer-shelf stations were aligned along 
CCA 1 and separated from the inner-shelf stations along 
this gradient (Fig. 8). Similarly, in fall, the three station 
groups were arranged separately along this gradient 
with the mid-shelf groups intermediate to the inner- and 
outer-shelf stations. Thus, the separation between inner-
shelf and mid- and outer-shelf stations is related to a 
gradient in depth, temperature, salinity, and density.

The second dimension separated outer-shelf stations 
from inner- and mid-shelf station groups. In spring and 
summer, the second dimension (CCA 2) was clearly influ-
enced by stratification (Fig. 8). The outer-shelf stations 
experienced a higher degree of stratification, separating 
them from the inner- and mid-shelf stations. During fall 
and winter, stratification still impacted the second di-
mension, but less dramatically. In summary, outer-shelf 
stations were distinguished from mid- and inner-shelf 
stations by increased stratification of the water. 

Relation between larval assemblages and  
water mass distributions

When hydrographic variables were combined to define 
water mass, a possible explanation for the cross-shelf 
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Figure 6
Percent abundance of taxa in larval assemblages associated with each station group 
(inner-, mid-, and outer-shelf) in (A) spring, (B) summer, (C) fall, and (D) winter.
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Figure 7
The number of taxa collected in each station group during each season for the (A) ten-percent and  
(B) one-percent data sets.

pattern in the larval community was revealed. Physical 
data delineated four water masses (Fig. 3). Larval fish 
assemblages differentiated only three of these water 
masses. Stations associated with inner-shelf water (the 

inshoremost water mass) and mid-shelf–Gulf Stream 
mixed water (the offshoremost water mass) formed dis-
tinct groups in the ordination of larval community data 
(Fig. 9). Stations associated with mid-shelf water also 
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Table 6
The P values from a Monte Carlo permutation test on 
the environmental variables for each season. Significant 
values (P<0.05) are shown in bold font. See Table 3 for 
definitions of variable codes.

 Season

Variable code Spring Summer Fall Winter

AVGDEN 0.002 0.01 0.34 0.494

AVGSAL 0.002 0.022 0.016 0.004

AVGTEM 0.152 0.1 0.04 0.016

DENGRAD 0.836 0.076 0.466 0.958

SALGRAD 0.456 0.086 0.78 0.634

TEMGRAD 0.074 0.076 0.38 0.574

DEP 0.468 0.002 0.002 0.68

STRAT 0.036 0.014 0.012 0.504
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Figure 8
Canonical correspondence analysis (CCA) ordinations (portray-
ing the first and second dimension scores) of the larval fish 
community data showing the correlations between environ-
mental variables, species, and station groups: (A) spring, (B) 
summer, (C) fall, and (D) winter. The solid triangles mark the 
location of taxa (as in Fig. 5), and the polygons surround the 
three cross-shelf station groups (as in Fig. 4). The arrows depict 
the gradient of each environmental variable. The dashed lines 
intersect at the origin of the plot. Analyses were conducted 
with both larval and environmental data. Refer to Table 3 
for definitions of environmental variable codes.

formed distinct groups. The fourth water mass, inner-
shelf–mid-shelf mixed water overlapped with either 
inner-shelf or mid-shelf water depending on season. In 
summary, the cross-shelf distribution and assemblages 
of water masses coincided with the three cross-shelf 
regions described: inner-shelf, mid-shelf, and outer-shelf 
characterized by inner-shelf water, mid-shelf water, and 
mid-shelf–Gulf Stream mixed water, respectively. 

Seasonal patterns in the cross-shelf distributions  
of the larval fish community

The ten percent data set revealed two distinct seasonal 
station groups (Fig. 10). The winter stations occurred in 
close proximity and were separate from stations sampled 
during the rest of the seasons (Fig. 10A). However, inner-
shelf stations sampled during fall overlapped with the 
winter stations because of the presence of winter and 
fall spawning species (L. xanthurus and M. undulatus). 
There was also overlap of the winter and the warm 
weather outer-shelf stations (Fig. 10, A and B). 

Similarly, the ten percent data set revealed two 
seasonal assemblages in the larval community data 
(Fig. 10, C and D). The warm weather assemblage com-
prised taxa associated with the warm weather station 
group and were collected during spring, summer, and 
fall. The winter assemblage was associated with the 
winter station group and comprised taxa collected dur-
ing winter. Taxa from the warm weather inner- and 
mid-shelf assemblages were different from those rep-
resenting the winter inner- and mid-shelf assemblages 
(Table 5). The outer-shelf assemblage, however, was less 
seasonally distinct, represented by Bothus ocellatus/rob-
insi in summer, fall, and winter and by Auxis rochei in 
spring, summer, and fall (Table 5). 
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Figure 9
Correspondence analysis (CA) ordinations (portraying the first 
and second dimension scores) of the larval fish community 
data showing the full ten-percent data set: (A) spring, (B) 
summer, (C) fall, and (D) winter. The points represent stations 
classified by water mass. Solid lines enclose the boundary of 
each station group with three or more stations. Station groups 
comprising one or two stations are not enclosed by a solid line. 
Each station group is labeled and portrayed with a different 
symbol. Stations with inner-shelf water are labeled with IS 
(inner-shelf), inner-shelf–mid-shelf mixed water with ISMS, 
mid-shelf water with MS, and mid-shelf–Gulf Stream mixed 
water with MSGS. The dashed lines intersect at the origin of 
the plot. Analyses were conducted using larval data only.

1
2.1 2.23

4

6

1

2.4
3
45

6

7

2.1
3

4 56
7

12.4

3

4

5

6
7

2.2

2.3

3

4

5

6

2.1
2.2

2.3
2.4

3

4

5
6
7

MSGS

MSGS

MS

MS

ISMS

ISMS

B

D

2.1

3

4
5

6

7

1
2.12.3
3

4
56

7

MSGS

MS

ISMS

C

12.2

3 6

1

2.4
3
4

56

7

IS
ISMS

MS

MSGS

A

C
A

 2

CA 1

S
pring

S
um

m
er

Fall
W

inter

Relation between seasonal larval assemblages and 
environmental variables

The seasonal pattern in the larval concentration data 
described above was maintained when constrained by 
environmental variables in the CCA. The community 
data clearly showed a seasonal influence on the first 
dimension in ordination space; winter taxa were sepa-
rate from taxa collected during the rest of the seasons. 
This seasonal pattern was also reflected in the environ-
mental data (Fig. 11). Salinity, density, temperature, 
depth, and stratification of the water column were again 
the most significant environmental variables for explain-
ing variance in the species data (P<0.05, Monte Carlo 
permutation test, Table 6). The warm weather stations 
and taxa coincided with higher water temperature, 
lower density, and a lower density gradient. In addition, 
the cross-shelf pattern evident in the second and third 
dimensions of the full larval concentration data (Fig. 10, 
A and B) appeared to correlate with depth of the water 
column, the degree of stratification in the water column, 
and salinity (Fig. 11). 

Implications for larval transport

The structure of larval assemblages was linked to water 
mass distributions and the cross-shelf zonation of physi-
cal circulation processes. Three cross-shelf zones of 
physical dynamics have been defined previously (Atkin-
son and Menzel, 1985; Pietrafesa et al., 1985a, 1985b; 
Lee et al., 1991; Boicourt et al., 1998). Three analogous 
cross-shelf zones were delineated in the larval com-
munity data. The cross-shelf larval assemblages were 
linked to three water masses with cross-shelf structure, 
and to the physical-chemical characteristics of the region 
(temperature, salinity, density, and stratification of the 
water column). The three cross-shelf zones identified pre-
viously in terms of physical dynamics coincided with the 
station groups and larval assemblages identified in our 
study. Thus, larval distribution and physical properties 
of the ocean are linked and indicate a strong influence 
of physical properties and processes on the distribution 
of larval fish on the southeast United States continental 
shelf.

Retention on the inner-shelf was a clear larval trans-
port pattern identified in the analyses. Menticirrhus 
americanus represents the inner-shelf group (Table 5) 
and were always found inshore of the 20-m isobath in 
inner-shelf water, in inner-shelf–mid-shelf mixed water, 
or in mid-shelf water, (Fig. 12). Spawning likely occurs 
on the inner-shelf (Cowan and Shaw, 1988), and larvae 
are retained in the inner-shelf region.

The analyses also demonstrated that transport from 
offshore onto the shelf is limited on the continental 
shelf off the coast of Georgia. Ceratoscopelus maderensis 
and Auxis rochei were found only at offshore stations 
(Fig. 13), representing the outer-shelf group (Table 5) 
and the mid-shelf–Gulf Stream mixed water mass. The 
presence of C. maderensis identified transport of a me-
sopelagic fish to waters inshore of the shelf break; how-
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Figure 10
Correspondence analysis (CA) ordinations of the larval fish community data showing (A) the 
first and second dimension scores and (B) the first and third dimension scores of the station 
groups (inner, mid, and outer) defined within each season when the 10% data set was used. 
Open symbols denote stations sampled during the warm weather season and filled symbols 
denote stations sampled during the winter season. (C) The first and second dimensions and 
(D) the first and third dimensions of the station and species groups in the full data set are 
shown without the incorporation of the environmental data. The dashed lines intersect at the 
origin of the plot. 
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ever, the rarity of this species on the continental shelf 
off the coast of Georgia provides evidence for relatively 
limited onshore transport from off the shelf. Powell and 
Robins (1994, 1998) and Govoni and Spach (1999) also 
collected tropical and deepwater taxa inshore of the 
shelf break. The presence of these taxa was likely due 
to frequent but variable exchange of larvae across the 
Gulf Stream front (Govoni and Spach, 1999). Less is 
known about spawning of A. rochei but the species’ lar-
val distribution represents restriction to offshore waters 
(always collected offshore of the 40-m isobath). 

During winter, when B. tyrannus was found across 
the shelf (Fig. 14), Bothus ocellatus/robinsi was col-
lected only on the outer part of the shelf (Fig. 14). Both 
B. tyrannus and B. ocellatus/robinsi likely spawn on the 

outer shelf. However, unlike B. tyrannus, Bothus ocel-
latus/robinsi was never collected inshore of station 3 
(the boundary between the inner- and mid-shelf zones), 
indicating that the two taxa may experience different 
transport pathways or different seasonal spawning pat-
terns (see “Discussion” section).

Discussion

Three cross-shelf regions were defined on the continental 
shelf off the coast of Georgia based on the distribution 
and abundance of larval fish: inner-shelf, mid-shelf, and 
outer-shelf. Each region was dominated by a distinct 
group of species (i.e., larval assemblage). The inner-shelf 
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Figure 11
The correlation between environmental variables and station groups portrayed by canoni-
cal correspondence analysis (Fig. 10). (A) The proximity of seasonal station groups (black 
polygons) and taxa (black triangles) when environmental and larval concentration data were 
analyzed. (B) The relationship between the environmental variables (black arrows) and the 
seasonal station groups (gray polygons). The direction of the arrows depicts the gradient of 
each environmental variable. The dashed lines intersect at the origin of the plot. 
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region was defined inshore of the 20-m isobath (Figs. 4, 
5, 12). The inner-shelf larval assemblage was the least 
diverse taxonomically (Table 2, Fig. 7B), and most taxa 
in the assemblage were nearshore or estuarine spawning 
species (e.g., Cynoscion regalis, Menticirrhus americanus, 
Table 2). Gradients in salinity and density were associ-
ated with the separation of the inner-shelf region but 
the direction of the gradient varied among seasons; in 
the spring and summer the inner-shelf region was char-
acterized by lower salinity and density, whereas in the 
fall and winter, the inner-shelf region was characterized 
by higher salinities and densities (Fig. 8). The restricted 
inshore distribution of the assemblage indicated mecha-
nisms of larval retention in the inner-shelf zone.

The mid-shelf region was defined between the 20- and 
40-m isobaths (Figs. 4, 5, 12). The mid-shelf larval as-
semblage was distributed over the widest area (Figs. 4, 
5, 12) and species in the assemblage were found in all 
three regions defined (Fig. 6). The mid-shelf region and 
larval assemblage were related to the average environ-
mental parameters encountered on the shelf (Fig. 8), 
which varied seasonally. The broad distribution of the 
assemblage indicated either broad spawning distribu-
tions of member species or mechanism of larval trans-
port to both the inner- and outer-shelf regions.

The outer-shelf region was defined as the area off-
shore from the 40-m isobath (Figs. 4, 5, 12). The outer-
shelf region was related to increased stratification of 
the water column, which was likely a result of Gulf 
Stream waters mixing onshore. These periodic intru-
sions would help explain the higher species richness of 
rare taxa found on the outer-shelf during fall and win-
ter (Fig. 7B). Taxa in the outer-shelf assemblage were 
either spawned on the outer-shelf (e.g., Hemanthias 
vivanus), spawned offshore of the shelf break and trans-

ported onto the shelf (e.g., Ceratoscopelus maderensis), 
or spawned south of the study area and transported 
onto the shelf (e.g., Abudefduf sp.). Most outer-shelf 
taxa, however, were restricted to outer-shelf stations 
indicating limited onshore exchange between the outer- 
and mid-shelf regions. 

Larval assemblages on the continental shelf off the 
coast of Georgia are derived from a combination of 
spawning distributions and larval transport; Brevoor-
tia tyrannus and Bothus ocellatus/robinsi provide an 
example. Brevoortia tyrannus spawn in water tempera-
tures between 16° and 23°C during winter (Checkley et 
al. 1999); these temperatures were experienced in the 
mid- and outer-shelf regions during winter. Bothus ocel-
latus/robinsi adults also occur on the mid- and outer-
shelf of the continental shelf off the coast of Georgia 
(Gutherz, 1967). Thus, during winter the spawning 
distribution of these two species are likely similar. The 
larval distributions, however, are different: B. tyrannus 
larvae were collected in all three regions of the shelf 
during winter, whereas B. ocellatus/robinsi were col-
lected on the mid- and outer-shelf (Fig. 14). The verti-
cal distributions of the two species also are different. 
B. tyrannus larvae occur higher in the water column 
than do B. ocellatus/robsini (Hare and Govoni1). The 
observed differences in horizontal distribution could 
result from the differences in vertical distributions. 
Alternatively, the distributional differences could result 
from physiological differences that allow B. tyrannus 
larvae to survive cooler inshore waters or could result 
from seasonal cross-shelf spawning patterns that result 

1 Hare, J. A., and J. J. Govoni. 2004. In review. Vertical 
distribution and the outcome of larval fish transport along 
the southeast US continental shelf during winter. 
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in B. tyrannus spawning inshore during the fall. This 
example demonstrates that there are multiple mecha-
nisms or pathways that affect the transport of larval 
fish, and that each species may be subject to different 
transport regimes. Therefore, to understand larval 
transport, many factors, including physical forcing 
mechanisms, the horizontal and vertical distributions 
of larvae, seasonal patterns, and the physiology of a 
species, need to be considered. 

Temporal larval assemblages were defined in addi-
tion to the spatial assemblages. Larvae clearly sepa-
rated into two seasonal spawning groups: winter and 

warm seasons (Fig. 10). The winter assemblage was 
associated with cool, denser water, whereas the warm 
water assemblage was associated with warmer, less 
dense water (Fig. 11). The cross-shelf structure in lar-
val assemblages was still evident in the two seasonal 
assemblages, but there was overlap in the winter and 
warm-weather outer-shelf assemblages (Fig. 10). This 
overlap occurred in waters with the least seasonal vari-
ability in temperature and salinity and likely results 
from year-round spawning by species in the outer-shelf 
assemblage or year-round supply of larvae to the outer-
shelf region by the Gulf Stream.

Menticirrhus americanus 

Fish abundance
(larvae/100 m3)

0
0.001–1

1.001–10

10.001–100

100.001–1000

Water mass

Inner-shelf water

Inner-shelf–mid-shelf mixed water

Mid-shelf water

Mid-shelf–Gulf Stream mixed water

No water mass data

A B

C D

Figure 12
Distribution of Menticirrhus americanus in (A) spring, (B) summer, (C) fall, 
and (D) winter. Transects for each cruise within a season are offset from one 
another. The size of the circle for each station varies with larval fish concentra-
tion (larvae/100 m3). The fill color for each circle varies with water mass. 
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Figure 13
Distribution of Auxis rochei in (A) spring, (B) summer, and distribution of Cera-
toscopelus maderensis in (C) spring (D) winter, across the shelf and across water 
masses. Transects for each cruise within a season are offset from one another. The 
size of the circle for each station varies with fish concentration (larvae/100 m3).  
The fill color for each circle varies with water mass.
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Winter-spawning species that use estuaries are fre-
quently grouped together as “estuarine-dependent” taxa 
(sensu Warlen and Burke, 1990). However, Hare and 
Govoni1 found that vertical distributions of these winter 
taxa are different. In addition, our study demonstrated 
that the horizontal distributions of these species are 
distinct: Lagadon rhomboides and Micropogonias un-
dulatus were members of the inner-shelf assemblage 
and Leiostomus xanthurus, Myrophis punctatus, and 
Brevoortia tyrannus were members of the mid-shelf 
assemblage. These findings imply that often grouped 
“estuarine-dependent” species have different spawning 

locations or experience different larval transport pro-
cesses (or both) and may not reflect a single group.

The definition of three regions based on larval fish 
distributions is consistent with the division of the shelf 
into three cross-shelf zones based on physical dynamics. 
The inner-shelf (0−20 m) is dominated by freshwater 
discharge, tides, and winds; the mid-shelf (20−40 m) 
is inf luenced by wind and tides; and the outer-shelf 
(40−75 m) is affected by the Gulf Stream and wind (At-
kinson and Menzel, 1985; Pietrafesa et al., 1985a, 1985b; 
Lee et al., 1991; Boicourt et al., 1998). Thus, the physical 
dynamics of the shelf appear to be closely linked to spa-
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tial patterns in the distribution of larval fish. Further 
physiochemical characteristics of the environment (e.g., 
temperature, salinity, water masses) are highly associ-
ated with the structure of larval assemblages (Tables 4, 
6, Fig. 9), again indicating a strong link between physi-
cal dynamics and larval distribution. However, patterns 
in spawning and behaviorally modified vertical distribu-
tions also have an influence on larval distributions and 
thus a simple two-dimensional passive model will not 
adequately explain the distribution of larval fish on the 
continental shelf off the coast of Georgia.

The three regions defined in our study have impor-
tant implications for the consideration of MPAs on the 
southeast United States shelf. The described cross-shelf 

zones (inner-, mid-, or outer-shelf) provide information 
needed to protect spawning habitat of specific species 
(e.g., Rhomboplites aurorubens spawns on the outer-
shelf; Table 2). Conversely, the species included in an 
area under consideration for protection can also be 
derived (e.g., Gray’s Reef National Marine Sanctuary 
potentially protects species spawning at the interface 
between the inner- and mid-shelf, Table 2). Further, 
spawning location information can be derived for sev-
eral species protected under the South Atlantic Fish-
eries Management Council’s coastal migratory pelag-
ics management plan (e.g., Rachycentron canadum, 
Scomberomorus cavalla, Scomberomorus maculatus, 
or Coryphaena hippurus, Table 2), but individuals of 

Fish abundance

0
0.001–1

1.001–10

10.001–100

100.001–1000

Water mass

Inner-shelf water

Inner-shelf–mid-shelf mixed water

Mid-shelf water

Mid-shelf–Gulf Stream mixed water

No water mass data

Bothus ocellatus/robinsi

A B

C D
Brevoortia tyrannus 

E

(larvae/100 m3)

Figure 14
Distribution of Bothus ocellatus/robinsi in (A) spring, (B) summer, (C) fall, and (D) winter, and Brevoortia 
tyrannus (E) in winter, across the shelf and across water masses. Transects for each cruise within a season are 
offset from one another. The size of the circle for each station varies with fish concentration (larvae/100 m3). 
The shading for each circle varies with water mass.
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these species range so widely (Sutter et al., 1991), only 
very large MPAs would afford protection from fishing 
(Parrish 1999, Beck and Odaya 2001). Unfortunately, 
many species in the snapper-grouper complex, a more 
sedentary group of species of particular importance in 
the southeast United States, were not collected. Either 
these taxa do not spawn on the continental shelf off the 
coast of Georgia and their larvae are rarely transported 
into the area, or snapper-grouper spawning on the con-
tinental shelf off the coast of Georgia is at a very low 
level and larvae are quite rare. 

Another aspect of MPAs designed for fisheries man-
agement is production of individuals in the MPA and 
their supply to surrounding areas; larval transport is 
a major mechanism of supply. On the continental shelf 
off the coast of Georgia, larval assemblages suggest 
that the supply of larvae from the south (by the Gulf 
Stream) and even between cross-shelf zones is limited. 
Members of the outer-shelf assemblage rarely occurred 
on the mid- and inner-shelf, and members of the inner-
shelf assemblage rarely occurred on the mid- and outer-
shelf. Thus, larvae spawned on the inner-shelf and to 
a lesser degree on the mid-shelf likely remain on the 
continental shelf off the coast of Georgia and appear to 
be subject to local retention. MPAs in the region, there-
fore, could provide a local benefit by supplying recruits 
to nonprotected areas on the continental shelf off the 
coast of Georgia. 
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