15 research outputs found

    Gyroscopic motion of superfluid trapped atomic condensates

    Full text link
    The gyroscopic motion of a trapped Bose gas containing a vortex is studied. We model the system as a classical top, as a superposition of coherent hydrodynamic states, by solution of the Bogoliubov equations, and by integration of the time-dependent Gross-Pitaevskii equation. The frequency spectrum of Bogoliubov excitations, including quantum frequency shifts, is calculated and the quantal precession frequency is found to be consistent with experimental results, though a small discrepancy exists. The superfluid precession is found to be well described by the classical and hydrodynamic models. However the frequency shifts and helical oscillations associated with vortex bending and twisting require a quantal treatment. In gyroscopic precession, the vortex excitation modes m=±1m=\pm 1 are the dominant features giving a vortex kink or bend, while the m=+2m=+2 is found to be the dominant Kelvin wave associated with vortex twisting.Comment: 18 pages, 7 figures, 1 tabl

    Consequence of superfluidity on the expansion of a rotating Bose-Einstein condensate

    Get PDF
    We study the time evolution of a rotating condensate, that expands after being suddenly released from the confining trap, by solving the hydrodynamic equations of irrotational superfluids. For slow initial rotation speeds, Ω0\Omega_{0}, we find that the condensate's angular velocity increases rapidly to a maximum value and this is accompanied by a minimum in the deformation of the condensate in the rotating plane. During the expansion the sample makes a global rotation of approximately π/2\pi/2, where the exact value depends on Ω0\Omega_{0}. This minimum deformation can serve as an easily detectable signature of superfluidity in a Bose--Einstein condensate.Comment: 4 pages, 3 figures, submitted to PR

    Superfluid and Dissipative Dynamics of a Bose-Einstein Condensate in a Periodic Optical Potential

    Full text link
    We create Bose-Einstein condensates of 87-rubidium in a static magnetic trap with a superimposed blue-detuned 1D optical lattice. By displacing the magnetic trap center we are able to control the condensate evolution. We observe a change in the frequency of the center-of-mass oscillation in the harmonic trapping potential, in analogy with an increase in effective mass. For fluid velocities greater than a local speed of sound, we observe the onset of dissipative processes up to full removal of the superfluid component. A parallel simulation study visualizes the dynamics of the BEC and accounts for the main features of the observed behavior.Comment: 4 pages, including figure

    Pinning of quantized vortices in helium drop by dopant atoms and molecules

    Get PDF
    Using a density functional method, we investigate the properties of liquid 4He droplets doped with atoms (Ne and Xe) and molecules (SF_6 and HCN). We consider the case of droplets having a quantized vortex pinned to the dopant. A liquid drop formula is proposed that accurately describes the total energy of the complex and allows one to extrapolate the density functional results to large N. For a given impurity, we find that the formation of a dopant+vortex+4He_N complex is energetically favored below a critical size N_cr. Our result support the possibility to observe quantized vortices in helium droplets by means of spectroscopic techniques.Comment: Typeset using Revtex, 3 pages and 5 figures (4 Postscript, 1 jpeg

    Vortex stabilization in a small rotating asymmetric Bose-Einstein condensate

    Full text link
    We use a variational method to investigate the ground-state phase diagram of a small, asymmetric Bose-Einstein condensate with respect to the dimensionless interparticle interaction strength γ\gamma and the applied external rotation speed Ω\Omega. For a given γ\gamma, the transition lines between no-vortex and vortex states are shifted toward higher Ω\Omega relative to those for the symmetric case. We also find a re-entrant behavior, where the number of vortex cores can decrease for large Ω\Omega. In addition, stabilizing a vortex in a rotating asymmetric trap requires a minimum interaction strength. For a given asymmetry, the evolution of the variational parameters with increasing Ω\Omega shows two different types of transitions (sharp or continuous), depending on the strength of the interaction. We also investigate transitions to states with higher vorticity; the corresponding angular momentum increases continuously as a function of Ω\Omega

    Spectroscopy of Dark Soliton States in Bose-Einstein Condensates

    Full text link
    Experimental and numerical studies of the velocity field of dark solitons in Bose-Einstein condensates are presented. The formation process after phase imprinting as well as the propagation of the emerging soliton are investigated using spatially resolved Bragg-spectroscopy of soliton states in Bose-Einstein condensates of Rubidium87. A comparison of experimental data to results from numerical simulations of the Gross-Pitaevskii equation clearly identifies the flux underlying a dark soliton propagating in a Bose-Einstein condensate. The results allow further optimization of the phase imprinting method for creating collective exitations of Bose-Einstein condensates.Comment: 14 pages, 9 figure
    corecore