72 research outputs found

    Non-coding RNAs in schistosomes: an unexplored world

    Get PDF
    Non-coding RNAs (ncRNAs) were recently given much higher attention due to technical advances in sequencing which expanded the characterization of transcriptomes in different organisms. ncRNAs have different lengths (22 nt to >1, 000 nt) and mechanisms of action that essentially comprise a sophisticated gene expression regulation network. Recent publication of schistosome genomes and transcriptomes has increased the description and characterization of a large number of parasite genes. Here we review the number of predicted genes and the coverage of genomic bases in face of the public ESTs dataset available, including a critical appraisal of the evidence and characterization of ncRNAs in schistosomes. We show expression data for ncRNAs in Schistosoma mansoni. We analyze three different microarray experiment datasets: (1) adult worms' large-scale expression measurements; (2) differentially expressed S. mansoni genes regulated by a human cytokine (TNF-α) in a parasite culture; and (3) a stage-specific expression of ncRNAs. All these data point to ncRNAs involved in different biological processes and physiological responses that suggest functionality of these new players in the parasite's biology. Exploring this world is a challenge for the scientists under a new molecular perspective of host-parasite interactions and parasite development.RNAs não codificadores (ncRNAs) têm sido recentemente objeto de atenção muito maior devido aos avanços técnicos no sequenciamento que expandiram a caracterização dos transcritomas em diferentes organismos. ncRNAs possuem diferentes comprimentos (22 nt a >1.000 nt) e mecanismos de ação que essencialmente compreendem uma sofisticada rede de regulação de expressão gênica. A publicação recente dos genomas e transcritomas dos esquistossomos aumentou a descrição e caracterização de um grande número de genes do parasita. Aqui nós revisamos o número de genes preditos e a cobertura das bases do genoma em face dos ESTs públicos disponíveis, incluindo uma avaliação crítica da evidência e caracterização de ncRNAs em esquistossomos. Nós mostramos dados de expressão de ncRNAs em Schistosoma mansoni. Nós analisamos três conjuntos diferentes de dados de experimentos com microarranjos: (1) medidas de expressão em larga escala de vermes adultos; (2) genes diferencialmente expressos de S. mansoni regulados por uma citocina humana (TNF-α) no parasita em cultura; e (3) expressão estágio-especifica de ncRNAs. Todos estes dados apontam para ncRNAs envolvidos em diferentes processos biológicos e respostas fisiológicas que sugerem funcionalidade destes novos personagens na biologia do parasita. Explorar este mundo é um desafio para os cientistas sob uma nova perspectiva molecular da interação parasita-hospedeiro e do desenvolvimento do parasita.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)SEtTReNDCoordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES

    Development of a Multiplex PCR Assay for Genotyping the Fish Pathogen Piscirickettsia salmonis Through Comparative Genomics

    Get PDF
    Piscirickettsia salmonis is a bacterial pathogen that severely impact the aquaculture in several countries as Canada, Scotland, Ireland, Norway, and Chile. It provokes Piscirickettsiosis outbreaks in the marine phase of salmonid farming, resulting in economic losses. The monophyletic genogroup LF-89 and a divergent genogroup EM-90 are responsible for the most severe Piscirickettsiosis outbreaks in Chile. Therefore, the development of methods for quick genotyping of P. salmonis genogroups in field samples is vital for veterinary diagnoses and understanding the population structure of this pathogen. The present study reports the development of a multiplex PCR for genotyping LF-89 and EM-90 genogroups based on comparative genomics of 73 fully sequenced P. salmonis genomes. The results revealed 2,322 sequences shared between 35 LF-89 genomes, 2,280 sequences in the core-genome of 38 EM-90 genomes, and 331 and 534 accessory coding sequences each genogroup, respectively. A total of 1,801 clusters of coding sequences were shared among all tested genomes of P. salmonis (LF-89 and EM-90), with 253 and 291 unique sequences for LF-89 and EM-90 genogroups, respectively. The Multiplex-1 prototype was chosen for reliable genotyping because of differences in annealing temperatures and respective reaction efficiencies. This method also identified the pathogen in field samples infected with LF-89 or EM-90 strains, which is not possible with other methods currently available. Finally, the genome-based multiplex PCR protocol presented in this study is a rapid and affordable alternative to classical sequencing of PCR products and analyzing the length of restriction fragment polymorphisms

    Ten Quick Tips for Harnessing the Power of ChatGPT/GPT-4 in Computational Biology

    Full text link
    The rise of advanced chatbots, such as ChatGPT, has sparked curiosity in the scientific community. ChatGPT is a general-purpose chatbot powered by large language models (LLMs) GPT-3.5 and GPT-4, with the potential to impact numerous fields, including computational biology. In this article, we offer ten tips based on our experience with ChatGPT to assist computational biologists in optimizing their workflows. We have collected relevant prompts and reviewed the nascent literature in the field, compiling tips we project to remain pertinent for future ChatGPT and LLM iterations, ranging from code refactoring to scientific writing to prompt engineering. We hope our work will help bioinformaticians to complement their workflows while staying aware of the various implications of using this technology. Additionally, to track new and creative applications for bioinformatics tools such as ChatGPT, we have established a GitHub repository at https://github.com/csbl-br/awesome-compbio-chatgpt. Our belief is that ethical adherence to ChatGPT and other LLMs will increase the efficiency of computational biologists, ultimately advancing the pace of scientific discovery in the life sciences.Comment: 14 pages, 1 figur

    Long noncoding intronic RNAs are differentially expressed in primary and metastatic pancreatic cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pancreatic ductal adenocarcinoma (PDAC) is known by its aggressiveness and lack of effective therapeutic options. Thus, improvement in current knowledge of molecular changes associated with pancreatic cancer is urgently needed to explore novel venues of diagnostics and treatment of this dismal disease. While there is mounting evidence that long noncoding RNAs (lncRNAs) transcribed from intronic and intergenic regions of the human genome may play different roles in the regulation of gene expression in normal and cancer cells, their expression pattern and biological relevance in pancreatic cancer is currently unknown. In the present work we investigated the relative abundance of a collection of lncRNAs in patients' pancreatic tissue samples aiming at identifying gene expression profiles correlated to pancreatic cancer and metastasis.</p> <p>Methods</p> <p>Custom 3,355-element spotted cDNA microarray interrogating protein-coding genes and putative lncRNA were used to obtain expression profiles from 38 clinical samples of tumor and non-tumor pancreatic tissues. Bioinformatics analyses were performed to characterize structure and conservation of lncRNAs expressed in pancreatic tissues, as well as to identify expression signatures correlated to tissue histology. Strand-specific reverse transcription followed by PCR and qRT-PCR were employed to determine strandedness of lncRNAs and to validate microarray results, respectively.</p> <p>Results</p> <p>We show that subsets of intronic/intergenic lncRNAs are expressed across tumor and non-tumor pancreatic tissue samples. Enrichment of promoter-associated chromatin marks and over-representation of conserved DNA elements and stable secondary structure predictions suggest that these transcripts are generated from independent transcriptional units and that at least a fraction is under evolutionary selection, and thus potentially functional.</p> <p>Statistically significant expression signatures comprising protein-coding mRNAs and lncRNAs that correlate to PDAC or to pancreatic cancer metastasis were identified. Interestingly, <it>loci </it>harboring intronic lncRNAs differentially expressed in PDAC metastases were enriched in genes associated to the MAPK pathway. Orientation-specific RT-PCR documented that intronic transcripts are expressed in sense, antisense or both orientations relative to protein-coding mRNAs. Differential expression of a subset of intronic lncRNAs (<it>PPP3CB</it>, <it>MAP3K14 </it>and <it>DAPK1 loci</it>) in metastatic samples was confirmed by Real-Time PCR.</p> <p>Conclusion</p> <p>Our findings reveal sets of intronic lncRNAs expressed in pancreatic tissues whose abundance is correlated to PDAC or metastasis, thus pointing to the potential relevance of this class of transcripts in biological processes related to malignant transformation and metastasis in pancreatic cancer.</p

    Human adipose-derived mesenchymal stem cell-conditioned medium ameliorates polyneuropathy and foot ulceration in diabetic BKS db/db mice

    Get PDF
    Background: Diabetic polyneuropathy (DPN) is the most common and early developing complication of diabetes mellitus, and the key contributor for foot ulcers development, with no specific therapies available. Different studies have shown that mesenchymal stem cell (MSC) administration is able to ameliorate DPN; however, limited cell survival and safety reasons hinder its transfer from bench to bedside. MSCs secrete a broad range of antioxidant, neuroprotective, angiogenic, and immunomodulatory factors (known as conditioned medium), which are all decreased in the peripheral nerves of diabetic patients. Furthermore, the abundance of these factors can be boosted in vitro by incubating MSCs with a preconditioning stimulus, enhancing their therapeutic efficacy. We hypothesize that systemic administration of conditioned medium derived from preconditioned MSCs could reverse DPN and prevent foot ulcer formation in a mouse model of type II diabetes mellitus. Methods: Diabetic BKS db/db mice were treated with systemic administration of conditioned medium derived from preconditioned human MSCs; conditioned medium derived from non-preconditioned MSCs or vehicle after behavioral signs of DPN was already present. Conditioned medium or vehicle administration was repeated every 2 weeks for a total of four administrations, and several functional and structural parameters characteristic of DPN were evaluated. Finally, a wound was made in the dorsal surface of both feet, and the kinetics of wound closure, re-epithelialization, angiogenesis, and cell proliferation were evaluated. Results: Our molecular, electrophysiological, and histological analysis demonstrated that the administration of conditioned medium derived from non-preconditioned MSCs or from preconditioned MSCs to diabetic BKS db/db mice strongly reverts the established DPN, improving thermal and mechanical sensitivity, restoring intraepidermal nerve fiber density, reducing neuron and Schwann cell apoptosis, improving angiogenesis, and reducing chronic inflammation of peripheral nerves. Furthermore, DPN reversion induced by conditioned medium administration enhances the wound healing process by accelerating wound closure, improving the re-epithelialization of the injured skin and increasing blood vessels in the wound bed in a skin injury model that mimics a foot ulcer. Conclusions: Studies conducted indicate that MSC-conditioned medium administration could be a novel cell-free therapeutic approach to reverse the initial stages of DPN, avoiding the risk of lower limb amputation triggered by foot ulcer formation and accelerating the wound healing process in case it occurs.Fil: De Gregorio, Cristian. Universidad del Desarrollo; ChileFil: Contador, David. Universidad del Desarrollo; ChileFil: Díaz, Diego. Universidad del Desarrollo; ChileFil: Cárcamo, Constanza. Universidad del Desarrollo; ChileFil: Santapau, Daniela. Universidad del Desarrollo; ChileFil: Lobos Gonzalez, Lorena. Universidad del Desarrollo; ChileFil: Acosta, Cristian Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Campero, Mario. Universidad de Chile; ChileFil: Carpio, Daniel. Universidad Austral de Chile; ChileFil: Gabriele, Caterina. University Of Catanzaro; ItaliaFil: Gaspari, Marco. University Of Catanzaro; ItaliaFil: Aliaga Tobar, Victor. Universidad de Chile; ChileFil: Maracaja Coutinho, Vinicius. Universidad de Chile; ChileFil: Ezquer, Marcelo. Universidad del Desarrollo; ChileFil: Ezquer, Fernando. Universidad del Desarrollo; Chil

    Genomic positional conservation identifies topological anchor point RNAs linked to developmental loci.

    Get PDF
    BACKGROUND: The mammalian genome is transcribed into large numbers of long noncoding RNAs (lncRNAs), but the definition of functional lncRNA groups has proven difficult, partly due to their low sequence conservation and lack of identified shared properties. Here we consider promoter conservation and positional conservation as indicators of functional commonality. RESULTS: We identify 665 conserved lncRNA promoters in mouse and human that are preserved in genomic position relative to orthologous coding genes. These positionally conserved lncRNA genes are primarily associated with developmental transcription factor loci with which they are coexpressed in a tissue-specific manner. Over half of positionally conserved RNAs in this set are linked to chromatin organization structures, overlapping binding sites for the CTCF chromatin organiser and located at chromatin loop anchor points and borders of topologically associating domains (TADs). We define these RNAs as topological anchor point RNAs (tapRNAs). Characterization of these noncoding RNAs and their associated coding genes shows that they are functionally connected: they regulate each other's expression and influence the metastatic phenotype of cancer cells in vitro in a similar fashion. Furthermore, we find that tapRNAs contain conserved sequence domains that are enriched in motifs for zinc finger domain-containing RNA-binding proteins and transcription factors, whose binding sites are found mutated in cancers. CONCLUSIONS: This work leverages positional conservation to identify lncRNAs with potential importance in genome organization, development and disease. The evidence that many developmental transcription factors are physically and functionally connected to lncRNAs represents an exciting stepping-stone to further our understanding of genome regulation.VMC was supported by a PAICONICYT grant (PAI79170021) and a FONDECYT-CONICYT grant (11161020)

    Análisis de genómica comparativa entre cepas aisladas de Piscirickettsia salmonis

    Get PDF
    76 p.Piscirickettsia salmonis es el agente etimológico causante de la Septicemia Rickettsial de Salmónidos (SRS) o Piscirickettsiosis, enfermedad que afecta gravemente la producción de salmón en diversas partes del mundo, con un impacto en el sur de Chile, en donde ha sido responsable de grandes pérdidas económicas. A pesar de la importancia que ha tenido este patógeno en la industria, existe escasa información acerca de su genoma y otros aspectos de su ciclo de vida y patogénesis, así como también en el diagnóstico, tratamiento, prevención y control. En las últimas décadas, las bases de datos con información y datos biológicos se han convertido en un recurso esencial para investigadores de todo el mundo, ya que son una herramienta que permite mantener grandes volúmenes de información, de forma ordenada, rápida y segura, a disposición para futuras investigaciones. Las bases de datos públicas y herramientas bioinformáticas, incluyendo protocolos automatizados, son estrategias útiles frente a análisis genómicos comparativos entre cepas microbianas. Aquí el avance tecnológico ha jugado un papel importante en cuanto a técnicas de secuenciación, posibilitando hoy la obtención de una gran cantidad de datos genómicos a bajo costo y con mayor rapidez. El presente trabajo entrega un análisis comparativo entre cepas aisladas de Piscirickettsia salmonis para la construcción de un "core" y pangenoma. Además este trabajo proporcionara el proceso automatizado, en cuanto a predicción de genes y ubicación de genes ortólogos, así como también una plataforma de información que permitirá poner a disposición de la comunidad científica la información analizada y clasificada de cada una de las cepas de Piscirickettsia salmonis./ABSTRACT: Piscirickettsia salmonis is etiologic agent responsible for the Salmonid Rickettsial Septicemia (SRS) or Piscirickettsiosis, disease that seriously a ects the production of salmon in various parts of the world, with an impact in southern Chile, where has been responsible for large economic losses. Despite the signi cant role played by this pathogen in the industry, there is limited information about their genome and other aspects of their life cycle and pathogenesis, as well as in the diagnosis, treatment, prevention and control. In recent decades, biological databases have become an essential resource for researchers around the world, because using them as tool for maintaining large volumes of information, neatly, quickly and safely, available for future research. The public databases and bioinformatics tools, including automated protocols are useful strategies against comparative genomic analysis between microbial strains. This technological progress has played an important role in terms of sequencing techniques, which allows to obtain genomic data at low cost and more quickly available to research. This work provide a comparative analysis of isolates strains of Piscirickettsia salmonis for the construction of a "core" and pangenome. Furthermore, this work will provide the automated process, in terms of gene prediction and location of orthologous genes, as well as an information platform which will make available to the scienti c community the information analyzed and classi ed in each strains of Piscirickettsia salmonis
    corecore