17 research outputs found

    Ragu: A Free Tool for the Analysis of EEG and MEG Event-Related Scalp Field Data Using Global Randomization Statistics

    Get PDF
    We present a program (Ragu; Randomization Graphical User interface) for statistical analyses of multichannel event-related EEG and MEG experiments. Based on measures of scalp field differences including all sensors, and using powerful, assumption-free randomization statistics, the program yields robust, physiologically meaningful conclusions based on the entire, untransformed, and unbiased set of measurements. Ragu accommodates up to two within-subject factors and one between-subject factor with multiple levels each. Significance is computed as function of time and can be controlled for type II errors with overall analyses. Results are displayed in an intuitive visual interface that allows further exploration of the findings. A sample analysis of an ERP experiment illustrates the different possibilities offered by Ragu. The aim of Ragu is to maximize statistical power while minimizing the need for a-priori choices of models and parameters (like inverse models or sensors of interest) that interact with and bias statistics

    Topographic Electrophysiological Signatures of fMRI Resting State Networks

    Get PDF
    Background: fMRI Resting State Networks (RSNs) have gained importance in the present fMRI literature. Although their functional role is unquestioned and their physiological origin is nowadays widely accepted, little is known about their relationship to neuronal activity. The combined recording of EEG and fMRI allows the temporal correlation between fluctuations of the RSNs and the dynamics of EEG spectral amplitudes. So far, only relationships between several EEG frequency bands and some RSNs could be demonstrated, but no study accounted for the spatial distribution of frequency domain EEG. Methodology/Principal Findings: In the present study we report on the topographic association of EEG spectral fluctuations and RSN dynamics using EEG covariance mapping. All RSNs displayed significant covariance maps across a broad EEG frequency range. Cluster analysis of the found covariance maps revealed the common standard EEG frequency bands. We found significant differences between covariance maps of the different RSNs and these differences depended on the frequency band. Conclusions/Significance: Our data supports the physiological and neuronal origin of the RSNs and substantiates the assumption that the standard EEG frequency bands and their topographies can be seen as electrophysiological signature

    A Tutorial on Data-Driven Methods for Statistically Assessing ERP Topographies

    Get PDF
    Dynamic changes in ERP topographies can be conveniently analyzed by means of microstates, the so-called "atoms of thoughts”, that represent brief periods of quasi-stable synchronized network activation. Comparing temporal microstate features such as on- and offset or duration between groups and conditions therefore allows a precise assessment of the timing of cognitive processes. So far, this has been achieved by assigning the individual time-varying ERP maps to spatially defined microstate templates obtained from clustering the grand mean data into predetermined numbers of topographies (microstate prototypes). Features obtained from these individual assignments were then statistically compared. This has the problem that the individual noise dilutes the match between individual topographies and templates leading to lower statistical power. We therefore propose a randomization-based procedure that works without assigning grand-mean microstate prototypes to individual data. In addition, we propose a new criterion to select the optimal number of microstate prototypes based on cross-validation across subjects. After a formal introduction, the method is applied to a sample data set of an N400 experiment and to simulated data with varying signal-to-noise ratios, and the results are compared to existing methods. In a first comparison with previously employed statistical procedures, the new method showed an increased robustness to noise, and a higher sensitivity for more subtle effects of microstate timing. We conclude that the proposed method is well-suited for the assessment of timing differences in cognitive processes. The increased statistical power allows identifying more subtle effects, which is particularly important in small and scarce patient populations

    Agency and ownership are independent components of 'sensing the self' in the auditory-verbal domain

    Get PDF
    'Sensing the self' relies on the ability to distinguish self-generated from external stimuli. It requires functioning mechanisms to establish feelings of agency and ownership. Agency is defined causally, where the subjects action is followed by an effect. Ownership is defined by the features of the effect, independent from the action. In our study, we manipulated these qualities separately. 13 right-handed healthy individuals performed the experiment while 76-channel EEG was recorded. Stimuli consisted of visually presented words, read aloud by the subject. The experiment consisted of six conditions: (a) subjects saw a word, read it aloud, heard it in their own voice; (b) like a, but the word was heard in an unfamiliar voice; (c) subject heard a word in his/her own voice without speaking; (d) like c, but the word was heard in an unfamiliar voice; (e) like a, but subjects heard the word with a delay; (f) subjects read without hearing. ERPs and difference maps were computed for all conditions. Effects were analysed topographically. The N100 (86-172 ms) displayed significant main effects of agency and ownership. The topographies of the two effects shared little common variance, suggesting independent effects. Later effects (174-400 ms) of agency and ownership were topographically similar, suggesting common mechanisms. Replicating earlier studies, significant N100 suppression was observed, with a topography resembling the agency effect. 'Sensing the self' appears to recruit from at least two very distinct processes: an agency assessment that represents causality and an ownership assessment that compares stimulus features with memory content

    A tutorial on data-driven methods for statistically assessing ERP topographies

    No full text
    Dynamic changes in ERP topographies can be conveniently analyzed by means of microstates, the so-called "atoms of thoughts", that represent brief periods of quasi-stable synchronized network activation. Comparing temporal microstate features such as on- and offset or duration between groups and conditions therefore allows a precise assessment of the timing of cognitive processes. So far, this has been achieved by assigning the individual time-varying ERP maps to spatially defined microstate templates obtained from clustering the grand mean data into predetermined numbers of topographies (microstate prototypes). Features obtained from these individual assignments were then statistically compared. This has the problem that the individual noise dilutes the match between individual topographies and templates leading to lower statistical power. We therefore propose a randomization-based procedure that works without assigning grand-mean microstate prototypes to individual data. In addition, we propose a new criterion to select the optimal number of microstate prototypes based on cross-validation across subjects. After a formal introduction, the method is applied to a sample data set of an N400 experiment and to simulated data with varying signal-to-noise ratios, and the results are compared to existing methods. In a first comparison with previously employed statistical procedures, the new method showed an increased robustness to noise, and a higher sensitivity for more subtle effects of microstate timing. We conclude that the proposed method is well-suited for the assessment of timing differences in cognitive processes. The increased statistical power allows identifying more subtle effects, which is particularly important in small and scarce patient populations

    Linking brain connectivity across different time scales with electroencephalogram, functional magnetic resonance imaging, and diffusion tensor imaging

    Get PDF
    Structural and functional connectivity are intrinsic properties of the human brain and represent the amount of cognitive capacities of individual subjects. These connections are modulated due to development, learning, and disease. Momentary adaptations in functional connectivity alter the structural connections, which in turn affect the functional connectivity. Thus, structural and functional connectivity interact on a broad timescale. In this study, we aimed to explore distinct measures of connectivity assessed by functional magnetic resonance imaging and diffusion tensor imaging and their association to the dominant electroencephalogram oscillatory property at rest: the individual alpha frequency (IAF). We found that in 21 healthy young subjects, small intraindividual temporal IAF fluctuations were correlated to increased blood oxygenation level-dependent signal in brain areas associated to working memory functions and to the modulation of attention. These areas colocalized with functionally connected networks supporting the respective functions. Furthermore, subjects with higher IAF show increased fractional anisotropy values in fascicles connecting the above-mentioned areas and networks. Hence, due to a multimodal approach a consistent functionally and structurally connected network related to IAF was observed

    Shifted Coupling of EEG Driving Frequencies and fMRI Resting State Networks in Schizophrenia Spectrum Disorders

    Get PDF
    INTRODUCTION: The cerebral resting state in schizophrenia is altered, as has been demonstrated separately by electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) resting state networks (RSNs). Previous simultaneous EEG/fMRI findings in healthy controls suggest that a consistent spatiotemporal coupling between neural oscillations (EEG frequency correlates) and RSN activity is necessary to organize cognitive processes optimally. We hypothesized that this coupling is disorganized in schizophrenia and related psychotic disorders, in particular regarding higher cognitive RSNs such as the default-mode (DMN) and left-working-memory network (LWMN). METHODS: Resting state was investigated in eleven patients with a schizophrenia spectrum disorder (n = 11) and matched healthy controls (n = 11) using simultaneous EEG/fMRI. The temporal association of each RSN to topographic spectral changes in the EEG was assessed by creating Covariance Maps. Group differences within, and group similarities across frequencies were estimated for the Covariance Maps. RESULTS: The coupling of EEG frequency bands to the DMN and the LWMN respectively, displayed significant similarities that were shifted towards lower EEG frequencies in patients compared to healthy controls. CONCLUSIONS: By combining EEG and fMRI, each measuring different properties of the same pathophysiology, an aberrant relationship between EEG frequencies and altered RSNs was observed in patients. RSNs of patients were related to lower EEG frequencies, indicating functional alterations of the spatiotemporal coupling. SIGNIFICANCE: The finding of a deviant and shifted coupling between RSNs and related EEG frequencies in patients with a schizophrenia spectrum disorder is significant, as it might indicate how failures in the processing of internal and external stimuli, as commonly seen during this symptomatology (i.e. thought disorders, hallucinations), arise

    Speed, Accuracy, and Efficiency of Judgements of Coincidence between Speech Acts and Auditory Perception during a Delayed Auditory Feedback Paradigm: A Behavioral Study in Patients with Schizophrenia

    No full text
    The inability to differentiate between one’s actions and their consequences from sensory inputs originating from an alien source might cause classical first-rank symptoms in schizophrenia, such as audio-verbal hallucinations (AVH). We aimed to determine whether patients with or without AVH perform differently in a task challenging the audio-verbal self-monitoring system compared to controls. Controls (n = 21) and schizophrenia patients with (AH, n = 11) and without AVH (NH, n = 9) participated. Subjects had to discern whether they heard a sound they had just uttered with or without delay. Reaction time, accuracy as well as sensitivity and response bias were compared between groups. There were no group effects in reaction time. Controls were significantly more accurate in the detection of delays compared to AH and to NH. However, the most salient observation was that these deficits were not uniformly present, but were selectively elicited by the delay, reducing patients’ response accuracy to chance level. The analysis of the data based on signal detection theory revealed a significant drop in sensitivity in both patient groups compared to the controls, and a response bias: Particularly the patients with AVH seemed to be biased not to consider a delay, rather than falsely signaling a delay. Such a deficit may blur the distinction between external events and self-initiated actions, thus eventually interfering with the patients’ sense of agency
    corecore