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Abstract Dynamic changes in ERP topographies can be

conveniently analyzed by means of microstates, the so-

called ‘‘atoms of thoughts’’, that represent brief periods of

quasi-stable synchronized network activation. Comparing

temporal microstate features such as on- and offset or

duration between groups and conditions therefore allows a

precise assessment of the timing of cognitive processes. So

far, this has been achieved by assigning the individual

time-varying ERP maps to spatially defined microstate

templates obtained from clustering the grand mean data

into predetermined numbers of topographies (microstate

prototypes). Features obtained from these individual

assignments were then statistically compared. This has the

problem that the individual noise dilutes the match between

individual topographies and templates leading to lower

statistical power. We therefore propose a randomization-

based procedure that works without assigning grand-mean

microstate prototypes to individual data. In addition, we

propose a new criterion to select the optimal number of

microstate prototypes based on cross-validation across

subjects. After a formal introduction, the method is applied

to a sample data set of an N400 experiment and to simu-

lated data with varying signal-to-noise ratios, and the

results are compared to existing methods. In a first com-

parison with previously employed statistical procedures,

the new method showed an increased robustness to noise,

and a higher sensitivity for more subtle effects of micro-

state timing. We conclude that the proposed method is

well-suited for the assessment of timing differences in

cognitive processes. The increased statistical power allows

identifying more subtle effects, which is particularly

important in small and scarce patient populations.

Keywords Microstates � Timing � Statistics �
Randomization � Topography � Model selection

Introduction

Scalp recorded evoked potentials permit the non-invasive

mapping of human brain functions at an excellent tem-

poral resolution. This allows for the decomposition of

complex cognitive processes into a sequence of process-

ing stages, each with a different functional significance

(Lehmann 1990; Murray et al. 2008). Importantly, an

unequivocal distinction of ERP components originating

from different brain regions can be obtained by com-

paring the topographies of scalp electromagnetic fields of

the ERP (McCarthy and Wood 1985; Michel et al. 2009).

By identifying and comparing ERP scalp topographies, it

is thus possible to track changes of brain functional

states, where a state is defined globally by a specific

distribution of one or several simultaneously active brain

regions. Spatial analysis of scalp electromagnetic fields

(Lehmann and Skrandies 1984) has moreover the

advantage of being reference independent, as topographic

configurations are not influenced by a reference electrode

(Lehmann 1987).
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A commonly used way to compare multichannel ERP

data between groups or conditions is to quantify the dif-

ference of the topography in a given time range and to test

it for significance. Various such methods exist and have

been proven to allow for a sound assessment of topo-

graphic differences in ERPs (Koenig et al. 2011; Lehmann

1987; Lehmann et al. 1993; Nishida et al. 2013; Strik et al.

1998). If the topography of a certain process is known, it is

also possible to quantify the amount of ERP variance that

can be attributed to this process and compare different

datasets based on this quantifier (Brandeis et al. 1992).

Another approach to multichannel ERP analyses are

various kinds of data driven spatio-temporal factor analy-

ses, such as principal component analysis (PCA), inde-

pendent component analysis (ICA), or as discussed in more

detail below, cluster analysis. Factor analyses of multi-

channel ERP data describe an ERP as composed of a

limited set of constant topographies, each with a specific

time course. The comparison of ERPs among different

groups or conditions is then primarily based on a com-

parison of the time-course of selected factors. A good

overview of spatial factor analysis methods (PCA, ICA,

microstates) in comparison to classical ERP approaches is

provided by Pourtois et al. (2008).

While PCA and ICA were primarily based on statistical

arguments such as independence among the factors, the

rationale for using cluster analysis emerged from the

observation of periods of stable field configurations typi-

cally separated by brief moments of rapid transitions

(Lehmann 1990; Wackermann et al. 1993). These periods

of quasi-stable field configurations were called microstates

(Lehmann and Skrandies 1980). They offered a natural,

data-driven and bottom-up definition of a brain functional

state as a period where a quasi-stable field configuration

was observed. Meanwhile, microstate analysis has become

a widely accepted tool for the assessment of the sequence

of functional states in ERPs (see Murray et al. 2008, for a

review). Microstates could also be observed in the elec-

trocorticogram of mice (Megevand et al. 2008). In addition,

it is also possible to identify microstates in the ongoing

resting EEG (Koenig et al. 2002; Lehmann 1990) and

microstate analyses of single trial ERP data have been

proven to be a sensitive and unique tool to track cognitive

processes on a single subject level (De Lucia et al. 2010,

2012; Tzovara et al. 2012a, b, 2013).

Technically, ERP microstate analysis based on spatial

clustering identifies a small set of prototypical ERP

topographies that can be observed in the measured data (so

called microstate class maps) and assigns each time period

of the ERP to exactly one of these microstate class maps

based on a best fit criterion (Murray et al. 2008; Pascual-

Marqui et al. 1995). Whereas the microstate maps corre-

spond to the forward solution of all sources contributing to

a microstate class, the assignment step yields the time of

the on- and offset of the microstates in the ERP. If this

algorithm is used to identify microstates in data consisting

of several experimental conditions or groups, the assign-

ment can be used to identify differences in the timing of a

given microstate class (i.e. onset, offset and duration),

which is a very elegant and efficient way to exploit the

information yielded by the high temporal resolution of the

data.

On the level of statistics, the microstate analyses per-

formed so far have been done by identifying the microstate

maps in ERP datasets averaged over a group of subjects

(grand mean ERPs), but the assignment was then done in

the ERPs of the individuals. From this individual assign-

ments, several parameters were extracted for a given

microstate map, such as the variance explained by the map,

the time when the first or last assignment to the map was

observed, or the total number of time points assigned to the

map. These individual parameters were then entered into

classical, usually parametric, univariate test statistics such

as t tests or ANOVAs (Michel et al. 2009).

While this approach has been applied successfully in a

series of studies (Arzy et al. 2007; Chouiter et al. 2013;

Darque et al. 2012; Knebel and Murray 2012; Kottlow

et al. 2011; Kovalenko et al. 2012; Laganaro and Perret

2011; Overney et al. 2005; Pannekamp et al. 2011; Pegna

et al. 1997; Perret and Laganaro 2012; Pourtois 2011;

Spierer et al. 2007; Stevenson et al. 2012; Taha et al. 2013),

it appeared to the authors that the method can still be

improved to increase statistical power and decrease the

effects of individual variance. Our criticism is that in the

above described approach, the microstate maps are com-

pared to data that has not been directly available to the

clustering algorithm, which obviously impoverishes the

amount of variance explained by the microstate maps.

Furthermore, the individual data contains individual vari-

ance that is usually of little interest, but reduces the topo-

graphic similarity to the microstate maps. We suspect that

this loss of similarity resulting from comparing microstate

maps obtained in grand mean data to individual ERPs may

negatively affect the resulting statistical power.

Our proposal is thus to develop a statistical test for

microstate features where the assignment procedure

remains on the level of the grand mean data. This is

expected to improve the similarity between the microstate

maps and the data these maps are assigned to, and thus

increase the statistical power of the results. For this pur-

pose, we will employ randomization techniques, which

(although computationally expensive) allow custom-tai-

loring statistical tests to such specific problems.

A further aim of the paper is to propose a solution to the

problem of selecting the appropriate number of microstate

maps. This selection has so far been made on criteria
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extracted from grand mean data (Pascual-Marqui et al.

1995), and the individual variance has been neglected. In

general, the aim of model selection procedures (such as

selecting a number of microstate maps) is to choose a

model that captures as much of that part of the data that

follows some generalizable rules, while it is oblivious to

random noise. Our proposal is that in ERP microstate

models, the generalizability of the model can be assessed

by testing it’s consistency across subjects; the parts of the

data that can be observed independently of the individual

subjects belong to the optimal microstate model, while

those parts of the data that depend on the individual sub-

jects should not be part of the model. The optimal model

(i.e. the optimal number of microstate maps) should thus

maximize the amount of explained variance that is inde-

pendent of individual attributes. This criterion can be

evaluated using cross-validation procedures across subjects

(Devijver and Kittler 1982).

In the following methods and results sections, we will

give a detailed explanation of the procedures and apply it

to a real sample dataset and a series of simulated datasets

with defined signal to noise ratios (SNRs). We will then

also analyze the same dataset with the established meth-

odology and compare the results.

As sample data set we chose data of healthy US

American subjects staying in Switzerland for a German

language exchange. EEG was measured while subjects

performed a sentence reading task once at the beginning

and once at a later phase of their stay (Stein et al. 2006).

These sentences ended with semantically correct or incor-

rect endings. Incorrect versus correct sentence endings

have been found to induce a so-called N400 effect which

was described by (Kutas and Hillyard 1980).

Methods

Selection of the Optimal Microstate Model

As outlined in the introduction, we aimed to identify a

microstate model that is sufficiently complex to accom-

modate the part of the data variance that is common across

subjects, while avoiding to account for variance that

appears to be tied to individual attributes. This type of

problems is typically addressed using cross-validation,

where models of different complexity are constructed

based on a subset of the available data, and the resulting

models are then used to make predictions for the remaining

data. Therein, the optimal model is the one that minimizes

the prediction error (Devijver and Kittler 1982).

In the context of microstate modeling, we propose to

implement microstate model selection through cross-vali-

dation by computing microstate models with different

numbers of microstate classes based on ERPs averaged

over a subset of the subjects (training data). These micro-

state models are then tested for their predictive value

(mean correlation) in the ERP’s averaged over the subjects

not included in the construction of the microstate model

(test data). Since the mean correlation of the test data with

a model will depend on the division of the data into

training- and test-sets, this procedure has to be repeated

with different, randomly created subsets of training and test

data. For each number of microstates, the mean correlation

of the test data with the model is then averaged across the

results obtained in the different subsets. The optimal

number of microstates is selected where this grand mean

correlation is maximal.

Note that this procedure contains no measures to mini-

mize the total number of microstates per se, but only

minimizes the number of microstates that cannot be found

consistently across subjects. The encountered number of

microstates therefore does not represent something that

necessarily generalizes across studies, but rather something

that is optimally suited for a dataset with a limited size.

Computationally, the procedure is illustrated in Fig. 1

and is as follows:

1. The algorithm randomly subdivides the subjects into a

training and a test dataset. If the subjects belonged to dif-

ferent groups, each dataset must contain members of all

groups.

2. Grand mean ERPs are computed in the training and

test datasets as a function of group and condition.

3. Spatio-temporal microstate models with different

numbers of microstate maps are computed in the grand

means of the training dataset. This model contains both the

Fig. 1 Flow-chart illustrating the procedure for the selection of the

optimal microstate model
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topographies of the microstate maps as well as the time

instances when these microstate maps are observed.

4. The mean correlation of the test data with each

microstate model is computed (Eq. 1)

Mean correlation ¼
Pnt

t¼1 CorrðVt; TtÞ
nt

ð1Þ

where t is time, nt is the number of time points, Corr is the

correlation function, Vt is the voltage vector of the test data

at time t, and Tt is the voltage vector of the microstate class

observed in the training data at time t. If several conditions

or groups are available, the mean correlation is computed

in each condition and group and averaged.

5. Steps 1–4 are repeated for a sufficient number of

times, and the mean correlations from each run are

retained.

6. The mean correlations are averaged across repetitions

and the number of microstate classes yielding the maxi-

mum mean correlation is identified. This represents the

optimal number of microstate classes for the analysis of the

given dataset.

7. The microstate templates with the optimal number of

classes are now computed using the grand mean ERPs of

all available subjects and conditions.

Once the optimal microstate model has been identified,

we can proceed to the statistical evaluation of the experi-

mental manipulations in the entire dataset.

Statistical Testing of Differences in Microstate Models

As in any statistical testing, an analysis of ERP microstate

features needs to compare an effect (e.g. a difference in the

onset of a given microstate class in the ERPs of two

groups) against the distribution of this effect under the null-

hypothesis. While in classical statistics, this distribution is

estimated based on the variance of the individual data, and

on assumptions about the nature of the distribution, ran-

domization statistics determine this distribution based on

simulations of the effect under the null hypothesis. For our

purposes, the important point here is that with randomi-

zation statistics, we can simulate ERP data under the null-

hypothesis and still compute grand mean ERPs, and

therefore still assess microstate effects based on these

grand means while the null-hypothesis is true.

In general, randomization based statistics consist of the

following three steps (Manly 2007):

1. Quantification of an effect of interest in the measured

data.

2. Creation of cases of the same quantifier compatible

with the null hypothesis. This is achieved by repeat-

edly applying the quantifier to the measured data after

randomizing it in a way that eliminates the suspected

structure in the data.

3. Comparison of the distribution of the quantifier

obtained in the real data with the distribution of the

quantifier under the null-hypothesis.

We will follow this scheme for our microstate statistics,

with the constraint that the assignment procedure shall

always be applied on the level of the grand mean data. The

proposed procedure is also illustrated in Fig. 2.

To quantify the effect of interest (step 1), we propose to

use the previously employed features extracted from the

established microstate assignment procedures (Murray

et al. 2008). These features are specific for a given

microstate map and for the given ERP and include, among

others, the amount of variance explained by the map, the

time point of the first (onset) or last (offset) assignment of

the ERP to that map, or the count of time-points assigned to

the maps. The important difference to the previously pro-

posed method is that in our procedure, these features are

extracted after the microstate maps have been assigned to

group and/or condition specific grand mean data and not to

the individual data. The quantifier of the effect of interest is

then defined by the variance of the feature extracted from

the different groups and/or conditions. For example, in an

analysis of the onset of a language related microstate under

two different conditions, the quantifier of the effect of

interest could be defined as the difference of onset of the

first occurrence of the language related microstate map

between the two conditions (the difference here is equiv-

alent to the variance of the two onsets). If we would

hypothesize that the language related microstate system-

atically differs between three groups of subjects, our

quantifier could for example be the variance among the

onsets obtained from the grand means of each of the three

groups.

For the creation of instances of the chosen quantifier

under the null hypothesis (step 2), we propose to randomize

the ERP data such that the possible suspected structure of

interest in the data is eliminated. For example, if we sup-

pose that semantically expected and unexpected sentence

endings systematically lead to different responses in a

group of subjects, we would construct data with two ran-

dom conditions R1 and R2 and randomly assign, in each

subject, the ERPs of expected sentence endings to either

R1 or R2, and the ERPs of unexpected sentence endings to

the remaining random condition. If we expected that two

groups of subjects (e.g. good and weak learners) differ

systematically, we would randomly shuffle the ERPs of

each subject among the two groups. Once this randomi-

zation has been done, the random group and/or condition

‘‘specific’’ grand means ERPs can be computed, and the

quantifier of interest can again be computed as above. The
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important difference to the previously employed procedure

is again that the microstate assignment necessary for the

feature extraction is computed in grand mean data.

Finally, the quantifier obtained in the measured data in

step 1 is compared to the distribution of the quantifier

obtained under the null hypothesis (step 3). This is done by

simple rank statistics, and the probability of the data being

compatible with the null hypothesis is defined by the pro-

portion of quantifiers obtained under the null-hypothesis

that were larger or equal to the quantifier obtained in the

real data. As an example, let us assume that our first

example above, the difference of onset obtained from the

randomized data was larger than the difference obtained

from the real data in 7 out of 500 cases. The probability

p that the observed difference is compatible with the null

hypothesis is then 7/500 = 0.014, which would (given an

alpha-level of 0.05) indicate that it is significant. If the

variance of the onset of the three groups obtained after

randomizing the data would be larger than the variance

obtained in the real data in 1,293 out of 5,000 randomi-

zation runs, the probability p that the observed group dif-

ferences were obtained by chance is estimated to be 1,293/

5,000 = 0.259, which would typically be considered as

not-significant. Note that the distribution of the quantifier

under the null-hypothesis depends on the precise random

permutations and assignments and may thus vary. The

resulting p value is thus not an exact value, but an estimate.

The literature suggests that for a reliable rejection of the

null-hypothesis on a 5 % level, 1,000 randomization runs are

necessary, and for an estimate at the 1 % level, 5,000

randomization runs are recommended (Manly 2007). In

contrast to parametric methods, statistical tests as the one

described here are ultimately based on rank statistics.

Therefore, they can be expected to be more robust against

false positive results due to biases and outliers in individual

data.

Sample Data Analysis and Simulations

The sample data and analysis are based on an experiment

that has previously been used to demonstrate statistical

procedures of the analysis of ERPs (Koenig et al. 2008,

2011). These data consist of ERPs recorded in 16 healthy

young English-speaking exchange students that spent a

year in the German-speaking part of Switzerland and that

participated in a larger study on the neurobiology of

training-related changes of the language system (Koenig

et al. 2008; Stein et al. 2006). Participants passively viewed

on a computer screen word-by-word presented German

sentences with semantically expected or unexpected sen-

tence endings. This is a typical setup to elicit the so-called

N400; an ERP component that is associated with the vio-

lation of semantic expectancy and characterized by a

parietal negativity peaking around 400 ms after stimulus

presentation (Brandeis et al. 1995; Kutas and Hillyard

1980). Subjects were recorded twice, once at the beginning

of their stay, and once after having lived about 3 months in

Switzerland. The aim of the experiment was to track the

progress of semantic integration in the acquired foreign

language using an N400 paradigm. The measured data

Fig. 2 Flow-chart depicting the

proposed statistical testing of

the microstate models
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consisted of 72 channel ERPs (0–1,000 ms time window,

250 Hz sampling rate 0.5–70 Hz band-pass) in four con-

ditions, completing a 2 9 2 (expected vs. unexpected

sentence ending by day 1 vs. day 2) within-subject factorial

design.

To identify the optimal number of microstate prototype

maps, the proposed cross validation procedure was applied

250 times, each time randomly splitting the 16 subjects into

training and learning datasets of 8 subjects each, testing

between 3 and 20 microstate classes. Every microstate

identification run used the k-mean algorithm with 50 random

initializations each. The resulting optimal model was used

for the comparison of the existing statistical method and the

novel randomization based microstate statistics. While it has

been argued that other algorithms such as hierarchical clus-

tering are somewhat better suited for the identification of

microstate maps (Murray et al. 2008), we used the traditional

k-mean algorithm here because other clustering algorithms

were not yet implemented and tested in our software envi-

ronment, and because all the procedures proposed here can

be applied to any clustering algorithm.

For the evaluation of the statistical power of the new and

the existing method, simulated data with different SNR

were constructed. For this purpose, the condition-wise

grand average ERP across all subjects was taken as signal,

whereas the individual deviations from this grand average

ERP were considered as noise. To obtain a dataset with a

predefined SNR, this noise was scaled such that the ratio of

the standard deviations of the signal and the scaled noise

were equal to the chosen SNR. The dataset with the pre-

defined SNR was then obtained by adding the scaled noise

to the signal (Eq. 2).

Vs;c;t;e ¼ Mc;t;e þ
Ns;c;t;e

� �
� sdðMc;t;eÞ

sdðNs;c;t;eÞ � R
ð2Þ

where Vs;c;t;e is the simulated data with a SNR of R;Mc;t;e is

the grand mean across subjects, Ns,c,t,s is the noise, sd is the

standard deviation, s is the subject, c is the condition, t is

time and e is the sensor. Simulated datasets were con-

structed with the following SNRs: 0.01, 0.1, 0.2, 0.5, 1, 2,

5, and 10. Note that these SNR values represent the

strength of the grand mean ERPs against the variability of

individual averaged ERPs, and not the strength of the

individual averaged ERPs against the single trials, where

SNRs are typically much higher.

For the sake of simplicity, the subsequent statistical

analyses of these simulated datasets were limited to

microstate classes associated to the well-established N400

effect. As dependent variables, we chose those the most

common microstate features; these were microstate onset

(time when the selected microstate map is observed first),

microstate offset (time when the selected microstate map is

observed last), map count (total number of time points a

selected microstate map is observed), mean GFP (mean

Global Field Power of all time points assigned to the

selected microstate map) and the center of gravity (center

of gravity in time of the GFP of all time points assigned to

the selected microstate map). To avoid a priori choices, no

distinction was made if a microstate class was observed

during a single or during several separate time periods, and

microstate assignments were always based on the complete

set of microstate class topographies.

The statistical analyses of the simulated data were done

using two existing software packages where the new and

the existing methodology have been implemented. For the

computations based on the existing methodology, the

CARTOOL program (Brunet et al. 2011) was used. The

novel method has been integrated in the RAGU program

(Koenig et al. 2011) developed by the authors. The rule for

the microstate assignment is common for both methods; in

an ERP map series the topography of each moment in time

is compared with all microstate class topographies using

the correlation coefficient across sensors. Each time point

is then assigned to the microstate class that fitted best, i.e.

that had the highest spatial correlation with the momentary

ERP topography. However, while in CARTOOL, this is

done independently for each subject and condition, the new

methodology does this assignment based on data averaged

across subjects.

In order to reduce statistical noise in the microstate

parameters, very briefly occurring microstates were sup-

pressed by a smoothing algorithm for categorical variables

(10 point smoothing with a penalty factor of 3, for details,

see Pascual-Marqui et al. (1995)). To exclude potential

confounders from differences in the clustering algorithms,

identical microstate prototype maps were used in both

analyses.

The results of the CARTOOL assignment were tested

for significance using repeated measures ANOVAs as

implemented in Matlab, separately for each microstate

map. When in a subject a microstate map was not

encountered in the analysis window in all conditions, the

data of that subject and map was excluded from the anal-

ysis for those features that could not be computed (i.e.

those that included time in reference to the stimulus onset).

The implementation of microstate statistics in RAGU is

based on the algorithm described above and directly yields

the p-values. Therefore, no further statistical analysis was

necessary. In addition, the estimation of significance is

based on rank statistics, such that no tests for normality

were necessary. To compare the statistical power of both

methods, the obtained p-values were plotted as function of

the SNR.

In order to illustrate the extent of correspondence of

the proposed analysis approach with more conventional

topographical ERP analyses, additional electrode-wise
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time-point by time-point t tests on one effect of interest

were conducted. Moreover, a topographic ANOVA (TA-

NOVA) with the above described 2 92 within-subject-

design (semantic expectation9day) as well as a randomi-

zation test using GFP with the same design were computed.

These analyses compared, time-point by time-point, the

topography (TANOVA-analysis) and the strength (GFP-

analysis) of the momentary grand-mean maps of the dif-

ferent conditions. For the topographic analysis, a general-

ized measure of map differences was used (Koenig et al.

2011), the GFP analysis employed the difference of GFP of

the same maps. These indices of differences of topography

and strength were then tested for statistical significance by

comparing them against the distribution of those measures

under the null-hypothesis as obtained by randomizing the

individual ERPs across conditions 5000 times. For further

details, see also Koenig et al. (2011).

Results

The resulting values of the mean correlations in the test

datasets are shown in Fig. 3. It becomes apparent that there

is a considerable variation in mean correlation, which is

driven by the random divisions of the subjects into learn-

ing- and test-sets. It is also apparent that the mean corre-

lation first increases with increasing number of microstates

to reach a plateau where no further predictive power is

gained by more complex models. The maximum grand

mean correlation was reached when using 10 microstate

classes, which was therefore the number of microstate

classes chosen for the remaining analyses.

The resulting optimal 10-microstate model and its

assignment to the grand-mean data are shown in Fig. 4.

The model shows many of the typical ERP components

expected in a visual N400 experiment (Brandeis et al.

1995), and substantial differences between expected and

unexpected sentence endings. For the assessment of the

N400 effect, the microstate classes 6 and 8 were used, since

their latencies and topographies corresponded best to the

N400. As Fig. 4 illustrates, microstate class 6 was observed

during unexpected sentence endings, while microstate class

8 was observed during expected sentence endings.

The results of the statistical analyses are shown in

Fig. 5. As the figure shows, both methods yielded the

predicted significant main effects of expectancy with SNR

ratios of at least 1. However, the new method appeared to

be in general less sensitive to noise, because it also yielded

significant main effects at lower SNRs, and also it detected

interactions of day and expectancy in microstate class 8 at

SNRs of 1 and below. The SNR of the real data was 0.77,

such that the new method would clearly have detected

more differences than the old one at a p-value of 0.05.

Furthermore, with the new method, the p-value always

declined with an increasing SNR, which was not the case

with the existing method. This may suggest that the

assessment of significance is more robust with the new

method. Another important difference between the two

methods is that in some cases, the new method gave no

statistical output. In this analysis, this was the case for the

interaction of expectancy and day in microstate class 6.

This happens when in the grand-mean data, the microstate

class of interest was not observed in one or more condition

and no differences between conditions could be computed.

The results of the presented method obtained in the

original data yielded, for microstate class 6 (the topography

primarily associated with the unexpected sentence ending),

a significantly later on- and offset and center of gravity in

the correct condition (p always smaller than .05). Micro-

state class 8 (primarily associated with the correct sentence

endings) showed an inverse pattern, with an earlier onset,

offset and center of gravity in the correct condition (p-

values always smaller than .005). Interestingly, microstate

class 8 also showed an interaction of expectancy and day in

the onset; after the expected sentence endings, this

microstate occurred earlier in day 2 than day 1, which

points at a learning effect.

The result of the electrode-wise t tests between the

unexpected and expected stimulus condition of day 2

showed mainly that within a time window of 300 and

800 ms after the target word, many of the ERP amplitudes

Fig. 3 Results of the cross-validation of microstate models with

different numbers of clusters. The grey lines indicate the mean

correlation coefficients (vertical axis) of the spatio-temporal models

constructed with different training dataset, applied to their comple-

mentary test-dataset as function of the number of microstate classes

(horizontal axis). The bold black line indicates the grand mean

correlation across 250 cross-validation runs. The best grand mean

correlation was obtained using 10 microstate classes
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differed (Fig. 6). The significant results of the microstate

analysis therefore correspond, as expected, to amplitude

differences in the ERPs.

As illustrated in Fig. 7, a topographic difference in

expectancy was found in the TANOVA within a similar

time frame (approx. 250–800 ms). This time frame covers

the on- and offset times of microstate classes 6 and 8 that

also showed significant main effects of day. Furthermore, a

topographic main effect of day (not considered in the

microstate analyses) was detected at about 220–250 ms,

and there was an interaction of expectancy and day at

600–620 ms. This interaction in the TANOVA is in a

period where microstate class 8 that also showed an

expectancy by day interaction. The randomization test of

GFP showed expectancy differences around 400 and

800 ms and a main effect of day at approximately

560–600 ms. No significant interactions were detected.

Discussion

As expected, the established individual assignment proce-

dure and the introduced randomization based microstate

statistics yielded reasonably similar results when investi-

gating the effect of the violation of semantic expectancy

under conditions with a high SNR. However, the individual

assignment procedure identified a smaller number of sig-

nificant effects in data simulated with lower SNR ratios.

Similar conclusions can be drawn based on the assessment

of the interaction of expectancy and day.

The new procedure thus seems to improve the statistical

power for the sake of the applicability of the model to the

individual data. In general, this gain in statistical power is

welcome for two reasons. Firstly, it may help to detect also

smaller effects that would not have been detected other-

wise. In the sample analysis, this was the case for the

interaction, which is probably the most interesting effect in

this dataset, because it implies learning. Secondly, the gain

in statistical sensitivity allows conducting sufficiently

powerful analyses in groups with fewer subjects. This is

especially interesting in populations where subjects are

difficult to recruit and to measure, namely in psychiatric

populations or when studying development and aging

(Grieder et al. 2012). This is of major interest as timing and

sequence effects of specific microstate classes have been

reported in these populations (Kikuchi et al. 2007; Koenig

et al. 1999; Lehmann et al. 2005; Nishida et al. 2013) and

further evidence for these effects also during tasks would

be particularly important.

What may be the reason for the discrepancy in the

sensitivity of the two methods, and what implications fol-

low? An answer can be found when we consider the

microstate assignment procedure as a data reduction step

with some loss of information: The full topographic

information of the map is being reduced to a labeling,

which as a consequence reduces the comparisons among

maps from a continuous and parametric range of similarity

or dissimilarity to a binary statement of same or different.

The essential difference between the two procedures is, in

our view, that in the individual assignment procedure, this

data reduction takes place at the level of single conditions

and subjects, and averaging across subjects is done using

the extracted features. In contrast, in the randomization

procedure, the data reduction is applied only after all the

averaging has been done on the level of topographies. This

implies that while the individual assignment procedure

becomes ‘‘unaware’’ of the metrics of topographic simi-

larities between maps, the randomization procedure is

‘‘unaware’’ of the presence of the extracted features in the

individual data. These different blind spots of the two

procedures have specific implications that we briefly dis-

cuss here.

Fig. 4 Upper part: The optimal 10 microstate maps. Blue map areas

indicate negative, red areas positive values; all maps have been

scaled to have a GFP of one. Different background colors are used to

differentiate the microstate classes. In the lower part, the assignment

of the 10 microstate classes to the grand mean data of the four

conditions is shown as function of time (horizontal axis). The color of

the areas indicates the microstate class; the height on the vertical axis

indicates the GFP of the ERP (Color figure online)
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In the individual assignment procedure, the loss of

quantitative information about map differences before

averaging may label two individual maps as different,

while that difference is relatively small. Two differently

labeled individual maps may thus still have a large amount

of communality, and this communality may well contain

significant information. The fact that in the sample analy-

sis, the individual assignment method failed to identify the

interactions may be explained by this problem, especially

also because these effects occurred in periods of relatively

low GFP, where the SNR is typically lower, and common

map features are more likely to be obscured by noise. The

‘‘blind spot’’ of the randomization based microstate sta-

tistics is of a different type. Because no microstate

assignments are made on the individual level, there is no

information about the possibility that a difference in

microstate assignments can actually be observed in the

individual data. In other words, the procedure enhances the

Fig. 5 Comparison of the p-values of the different microstate

measures obtained with the two procedures in the data with simulated

SNRs, as currently implemented in CARTOOL (assignment of

individual data) and RAGU (randomization based approach). Results

of the main effect of semantic expectancy (N400 effect) and the

interaction of day and expectancy are shown for microstate class 6

and 8. The vertical axes indicate p-values; the horizontal axes

indicate the SNRs of the data (logarithmic scale). The asterisks

indicate the SNR where one of the methods first reached a p-value

below 5 %. In addition, there are bar graphs showing the mean values

for correct (gray bars) and false sentence endings for day 1 and 2 and

for the average of the 2 days. NA not available

80 Brain Topogr (2014) 27:72–83

123



sensitivity of the analysis beyond a point that remains

reproducible on an individual level. The obtained effect

may thus be interesting from a theoretical perspective, but

have limited value for each subject. This is a problem if the

use of microstate analyses is intended for the classification

of single subjects or trials (De Lucia et al. 2010, 2012;

Tzovara et al. 2012a, b, 2013). Similarly, if correlations

with a continuous variable are to be computed, grand

means become meaningless and the method presented here

cannot be applied.

The differences between the two approaches become

apparent also when we look at what happens if a microstate

class is never observed in one condition. Measures con-

taining time information in reference to an event can then

obviously not be computed. In the individual assignment

procedure, data where this is the case is typically excluded,

which is however a manipulation of the data that may have

systematic effects on the resulting statistics. In the ran-

domization procedure, the absence of a microstate class in

the grand mean of a relevant condition leads to the result

that no statistics on microstate latencies can be computed at

all (Fig. 5).

In order to facilitate the usage of the new methodology,

it has been integrated into the existing and freely available

RAGU software (Koenig et al. 2011). RAGU has been

developed under Matlab, allowing for a usage across dif-

ferent operating systems. Furthermore, it implements a

series of other analysis methods such as TANOVAs or the

topographic consistency test (Koenig and Melie-Garcia

2010) and various tools for visualization, such that users

can easily compare and integrate results obtained with the

different methods as suggested above.

From a conceptual point of view, the microstate analysis

as presented here is a complement to analysis strategies

that compare spatial topographies (Lehmann 1987; Leh-

mann et al. 1993; Strik et al. 1998) as for example the

TANOVA provided by the RAGU software (Koenig et al.

2011). These analyses are usually anchored to invariant

time windows and assess an effect in terms of variations of

map topographies (Michel et al. 2009; Murray et al. 2008)

in a constant time period. Microstate analyses are com-

plementary to this approach in the sense that they are

anchored to a constant set of map topographies (the

microstate class maps) and search for variations in the time

periods where these maps occur. It is thus in our opinion

advisable to employ both methods to find the most com-

prehensible description of an effect. On one side, a simple

time shift of a microstate due to an experimental manipu-

lation will yield a quite complicated pattern of topographic

differences that may obscure the initial, rather simple

nature of an effect. On the other side, small topographic

changes may not result in a change of microstate class

assignment, and may thus go undetected by a microstate

analysis. Thus, the microstate approach complements the

TANOVA approach by segregating cognitive processes

into different sub-processes represented by specific, con-

stant topographies. Further, it provides information on the

sequences and timing (onset, offset and duration) of these

Fig. 6 Plot of the electrode (vertical axis) by time (horizontal axis)

matrix of t tests between unexpected and expected target words at day

2. White indicates a significant amplitude difference (p [ 0.05), grey

reflects no significant difference

Fig. 7 Left panel: color-coded

p-values of the TANOVA

plotted for each time point

(horizontal axis) of the main

effects of expectancy and day

and their interaction. Right

panel: Analog to the left panel,

but based on the GFP. Blue to

green to yellow colors reflect

non-significant topographic or

GFP differences respectively;

orange to red areas highlight

significantly differing

topographies or GFP (see color

legend) (Color figure online)

Brain Topogr (2014) 27:72–83 81

123



microstate classes. The TANOVA in turn compensates for

the simplification introduced by modeling the data by a

sequence of non-overlapping and constant topographies. In

a comprehensive analysis of an ERP experiment, the two

analysis strategies (topographic comparisons and micro-

states) should however yield compatible and converging

conclusions. Finally, since both approaches typically con-

sider exclusively the topography and not the strength of the

ERP, an exhaustive analysis of the data should be com-

plemented by an analysis of the GFP, which considers

exclusively the strength and not the topography of the scalp

field data.
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