34 research outputs found

    Impact of the Minneapolis Neighborhood Revitalization Program on Neighborhood Organizations.

    Get PDF
    The inauguration of the Minneapolis Neighborhood Revitalization Program in 1991 and the unprecedented level of funding it provides to neighborhood groups gives the program the potential to significantly affect neighborhoods and their organizations. This study looks at the impact of NRP on three neighborhood organizations: the Whittier Alliance, the Stevens Square Community Organization, and the Jordan Area Community Council. Intensive in-person interviews with neighborhood activists and city staff members revealed the changes each neighborhood group went through as they prepared their NRP plan. The study concludes that NRP in deepening the bias toward middle class, white property owners and that in two of the neighborhoods it has increased factionalism. A summary of the study appeared in the June 1994 CURA Reporter

    Virtual reconfiguration and assessment of aircraft cabins using model-based systems engineering

    Get PDF
    In order to create a detailed digital cabin, virtual models are combined with the geometric data of physical cabin components. This digital cabin can be used to analyse maintenance times, find optimization potential or test the integration of new technologies (e.g. hydrogen powered systems). This requires different levels of detail of the virtual cabin model as well as an automated data (e.g. 3D models, parameters) transfer infrastructure between them. However, this model structure is challenged by the complexity of the system to be mapped due to subsystems and interconnections. In addition, it requires an integration and preparation of the transmitted data (3D models, process data). This paper presents a method that addresses these challenges and introduces an architecture for building a virtual cabin for reconfiguration and analysis of new cabin variants. Model-based systems engineering is used to create a digital model of the aircraft cabin and its systems. The model is used for an automated reconfiguration of the cabin and consists of formalized knowledge and requirements. In addition, a 3D scan process is applied that digitizes the physical cabin subcomponents (e.g. riser duct) to increase the level of detail and to consider uncertainties. Subsequently, all data and models are visualized in a virtual reality environment in which users can interact with it and make direct changes to the layout. These changes are automatically transferred to the conceptual cabin design process for an automated reconfiguration and examination of the layout regarding the requirements. As a result, a baseline architecture for the digital cabin has been created, which enables fast system reconfigurability, traceability of changes, identification of interdependencies, and investigation of new cabin variations (retrofit)

    Brain connectivity changes in autosomal recessive Parkinson Disease: a model for the sporadic form

    Get PDF
    Biallelic genetic mutations in the Park2 and PINK1 genes are frequent causes of autosomal recessive PD. Carriers of single heterozygous mutations may manifest subtle signs of disease, thus providing a unique model of preclinical PD. One emerging hypothesis suggests that non-motor symptom of PD, such as cognitive impairment may be due to a distributed functional disruption of various neuronal circuits. Using resting-state functional MRI (RS-fMRI), we tested the hypothesis that abnormal connectivity within and between brain networks may account for the patients' cognitive status. Eight homozygous and 12 heterozygous carriers of either PINK1 or Park2 mutation and 22 healthy controls underwent RS-fMRI and cognitive assessment. RS-fMRI data underwent independent component analysis to identify five networks of interest: default-mode network, salience network, executive network, right and left fronto-parietal networks. Functional connectivity within and between each network was assessed and compared between groups. All mutation carriers were cognitively impaired, with the homozygous group reporting a more prominent impairment in visuo-spatial working memory. Changes in functional connectivity were evident within all networks between homozygous carriers and controls. Also heterozygotes reported areas of reduced connectivity when compared to controls within two networks. Additionally, increased inter-network connectivity was observed in both groups of mutation carriers, which correlated with their spatial working memory performance, and could thus be interpreted as compensatory. We conclude that both homozygous and heterozygous carriers exhibit pathophysiological changes unveiled by RS-fMRI, which can account for the presence/severity of cognitive symptom

    The Promigratory Activity of the Matricellular Protein Galectin-3 Depends on the Activation of PI-3 Kinase

    Get PDF
    Expression of galectin-3 is associated with sarcoma progression, invasion and metastasis. Here we determined the role of extracellular galectin-3 on migration of sarcoma cells on laminin-111. Cell lines from methylcholanthrene-induced sarcomas from both wild type and galectin-3−/− mice were established. Despite the presence of similar levels of laminin-binding integrins on the cell surface, galectin-3−/− sarcoma cells were more adherent and less migratory than galectin-3+/+ sarcoma cells on laminin-111. When galectin-3 was transiently expressed in galectin-3−/− sarcoma cells, it inhibited cell adhesion and stimulated the migratory response to laminin in a carbohydrate-dependent manner. Extracellular galectin-3 led to the recruitment of SHP-2 phosphatase to focal adhesion plaques, followed by a decrease in the amount of phosphorylated FAK and phospho-paxillin in the lamellipodia of migrating cells. The promigratory activity of extracellular galectin-3 was inhibitable by wortmannin, implicating the activation of a PI-3 kinase dependent pathway in the galectin-3 triggered disruption of adhesion plaques, leading to sarcoma cell migration on laminin-111

    Residual cancer burden after neoadjuvant chemotherapy and long-term survival outcomes in breast cancer: a multicentre pooled analysis of 5161 patients

    Get PDF

    Common variability in oestrogen-related genes and pancreatic ductal adenocarcinoma risk in women

    Get PDF
    The incidence of pancreatic ductal adenocarcinoma (PDAC) is different among males and females. This disparity cannot be fully explained by the difference in terms of exposure to known risk factors; therefore, the lower incidence in women could be attributed to sex-specific hormones. A two-phase association study was conducted in 12,387 female subjects (5436 PDAC cases and 6951 controls) to assess the effect on risk of developing PDAC of single nucleotide polymorphisms (SNPs) in 208 genes involved in oestrogen and pregnenolone biosynthesis and oestrogen-mediated signalling. In the discovery phase 14 polymorphisms showed a statistically significant association (P < 0.05). In the replication none of the findings were validated. In addition, a gene-based analysis was performed on the 208 selected genes. Four genes (NR5A2, MED1, NCOA2 and RUNX1) were associated with PDAC risk, but only NR5A2 showed an association (P = 4.08 × 10−5) below the Bonferroni-corrected threshold of statistical significance. In conclusion, despite differences in incidence between males and females, our study did not identify an effect of common polymorphisms in the oestrogen and pregnenolone pathways in relation to PDAC susceptibility. However, we validated the previously reported association between NR5A2 gene variants and PDAC risk

    Abstracts from the 8th International Conference on cGMP Generators, Effectors and Therapeutic Implications

    Get PDF
    This work was supported by a restricted research grant of Bayer AG

    Receptor-independent modulation of cAMP-dependent protein kinase and protein phosphatase signaling in cardiac myocytes by oxidizing agents

    No full text
    The contraction and relaxation of the heart is controlled by stimulation of the beta 1-adrenoreceptor (AR) signaling cascade, which leads to activation of cAMP-dependent protein kinase (PKA) and subsequent cardiac protein phosphorylation. Phosphorylation is counteracted by the main cardiac protein phosphatases, PP2A and PP1. Both kinase and phosphatases are sensitive to intramolecular disulfide formation in their catalytic subunits that inhibits their activity. Additionally, intermolecular disulfide formation between PKA type I regulatory subunits (PKA-RI) has been described to enhance PKA's affinity for protein kinase A anchoring proteins, which alters its subcellular distribution. Nitroxyl donors have been shown to affect contractility and relaxation, but the mechanistic basis for this effect is unclear. The present study investigates the impact of several nitroxyl donors and the thiol-oxidizing agent diamide on cardiac myocyte protein phosphorylation and oxidation. Although all tested compounds equally induced intermolecular disulfide formation in PKA-RI, only 1-nitrosocyclohexalycetate (NCA) and diamide induced reproducible protein phosphorylation. Phosphorylation occurred independently of beta(1)-AR activation, but was abolished after pharmacological PKA inhibition and thus potentially attributable to increased PKA activity. NCA treatment of cardiac myocytes induced translocation of PKA and phosphatases to the myofilament compartment as shown by fractionation, immunofluorescence, and proximity ligation assays. Assessment of kinase and phosphatase activity within the myofilament fraction of cardiac myocytes after exposure to NCA revealed activation of PKA and inhibition of phosphatase activity thus explaining the increase in phosphorylation. The data suggest that the NCA-mediated effect on cardiac myocyte protein phosphorylation orchestrates alterations in the kinase/phosphatase balance
    corecore