16 research outputs found

    Photoheterotrophic cultivation of purple non-sulphur bacterium Rhodovulum adriaticum on the media with different carbon sources

    Get PDF
    Ljubičaste nesumporne bakterije zanimljive su s ekoloÅ”kog i ekonomskog stajaliÅ”ta u održivim biotehnoloÅ”kim procesima proizvodnje biogoriva, biokemikalija, biopolimera, biomase odnosno sintezi specifičnih spojeva kao Å”to su npr. karotenoidi i pigmenti. Za uspostavu ekoloÅ”ki i ekonomski održivih bioprocesa nužan je adekavatan odabir radnih mikroorganizama, sirovina i uvjeta kultivacije, a dobar primjer za to je razvoj bioprocesa na obnovljivim sirovinama kao Å”to su to lignocelulozne sirovine. U ovom istraživanju proučavan je fotoheterotrofni uzgoj ljubičaste nesumporne bakterije Rhodovulum adriaticum DSM 2781 na tekućim hranjivim podlogama koje sadrže glukozu i/ili ksilozu kao izvore ugljika s ciljem dobivanja bakterijske biomase i fotosintetskih pigmenata. Rezultati istraživanja pokazuju da su najveće vrijednosti pokazatelja uspjeÅ”nosti bioprocesa (YX = 2,095 g L-1; YX/S = 0,54 g g-1i Pr = 0,022 g L-1h-1) vezanih u dobivanje biomase ostvareni kod uzgoja na hranjivoj podlozi s 5 g L-1 glukoze. Uzgoj R. adriaticum DSM 2781 na hranjivoj podlozi s 3 g L-1 glukoze i ksiloze pokazao se najuspjeÅ”nji za dobivanje fotosintetskih pigmenata (ukupni pigmenti 13,27 mg g-1 biomase) uz zadovoljavajuće ostale pokazatelje uspjeÅ”nosti bioprocesa (YX = 1,507 g L-1; YX/S = 0,22 g g-1i Pr = 0,017 g L-1h-1).Purple non-sulphur bacteria are interesting from ecologic and economic point of view in sustainable biotechnological production of biofuels, biochemicals, biopolymers and biomass as well as specific compounds such as carotenoids and pigments. In order to establish ecological and economic sustainable bioprocesses it is necessary to select adequate working microorganisms, raw materials and cultivation conditions. Development of bioprocesses on the renewable raw materials (e.g. lignocellulose containing feedstocks) are good example for such bioprocess types. In this research, the photoheterotrophic cultivation of purple non-sulfur bacteria Rhodovulum adriaticum DSM 2781 was studied on the liquid media containing glucose or /and xylose as a carbon sources in order to produce bacterial biomass and photosynthetic pigments. Results obtained in this study show that the highest values of bioprocess efficiency parameters (YX = 2,095 g L-1; YX/S = 0,54 g g-1i Pr = 0,022 g L-1h-1) related to the biomass production were observed during bacterial cultivation on media with 5 g L-1. Cultivation of R. adriaticum DSM 2781 on the media with 3 g L-1 glucose and xylose shows the highest total photosynthetic pigments content (13,27 mg g-1 biomass) together with satisfy other bioprocess efficiency parameters (YX = 1,507 g L-1; YX/S = 0,22 g g-1i Pr = 0,017 g L-1h-1)

    Lignocellulosic byproducts from agriculture and the food industry as a driver of biotechnological production progress

    Get PDF
    Značajne količine raznovrsnih ostataka (odnosno lignocelulozne biomase) nastaju u poljoprivredi, prehrambenoj industriji i Å”umarstvu. Stoga je važno podići svijest o mogućnostima primjene takvih materijala koji se u danaÅ”nje vrijeme ne bi trebali tretirati kao otpad, već se mogu koristiti kao obnovljive biotehnoloÅ”ke sirovine za proizvodnju kemikalija, drugih visokovrijednih proizvoda i biogoriva. Lignocelulozni materijal uglavnom sadrži celulozu, hemicelulozu i lignin. Predmet interesa ovog rada je lignocelulozni otpad iz poljoprivrede i prehrambene industrije kao mogući sirovinski temelj za napredak održive biotehnoloÅ”ke proizvodnje u Republici Hrvatskoj. Razmotrene su dostupne količine ovih lignoceluloznih sirovina, tipovi bioprocesa u kojima se one mogu koristiti, postupci predobrade koje je neophodno provesti prije provedbe samog bioprocesa te vrste biotehnoloÅ”kih proizvoda koje je moguće dobiti.Significant amounts of various residues (i.e. lignocellulosic biomass) are generated in agriculture, food industry and forestry. Therefore, it is important to raise awareness about the possibilities of using such materials, which nowadays should not be treated as waste, but can be used as renewable biotechnological raw materials for the production of chemicals, other high-value products and biofuels. Lignocellulosic material consists mainly of cellulose, hemicellulose and lignin. The subject of interest of this paper is lignocellulosic waste from agriculture and the food industry as a possible raw material basis for the progress of sustainable biotechnological production in the Republic of Croatia. The available amounts of these lignocellulosic raw materials, the types of bioprocesses in which they can be used, the pretreatment procedures that need to be carried out before the implementation of the bioprocess itself, and the types of biotechnological products that can be obtained have been considered

    Recent Trends in Biodiesel and Biogas Production

    Get PDF
    Biodizel i bioplin dva su vrlo važna izvora obnovljive energije Å”irom svijeta, a posebice u zemljama EU. Biodizel se gotovo isključivo koristi kao transportno gorivo, dok se bioplin uglavnom koristi za proizvodnju električne energije i topline. Primjena sofisticiranijih tehnika pročiŔćavanja u proizvodnji čistog biometana iz bioplina omogućuje njegovo uvođenje u mrežu prirodnog plina i daljnju uporabu kao transportno gorivo. Dok se bioplin uglavnom proizvodi od otpadnih materijala (materijal s odlagaliÅ”ta otpada, gnojivo, talog zaostao pročiŔćavanjem otpadnih voda, poljoprivredni otpad), biodizel se u EU uglavnom dobiva iz repice ili drugih uljarica koje se koriste kao hrana, Å”to dovodi u pitanje njihovu ulogu kao hrane ili goriva. Kako bi se ublažio ovaj problem, napravljeni su značajni napori u koriÅ”tenju neprehrambenih sirovina za proizvodnju biodizela. To uključuje sve vrste otpadnih ulja i masti, no od nedavno se viÅ”e pažnje posvećuje proizvodnji mikrobnih ulja uzgojem mikroorganizama koji mogu akumulirati velike količine lipida u biomasi. Obećavajući kandidati za mikrobnu proizvodnju lipida mogu se pronaći među različitim sojevima filamentoznih plijesni, kvasaca, bakterija i mikroalgi. Sirovine od interesa su i poljoprivredni otpad bogat ugljikohidratima te različite lignocelulozne sirovine, za čiju se uporabu joÅ” uvijek moraju rijeÅ”iti neka tehnička pitanja. Također, u ovom su radu razmatrane metode izdvajanja i pročiŔćavanja biodizela i bioplina.Biodiesel and biogas are two very important sources of renewable energy worldwide, and particularly in the EU countries. While biodiesel is almost exclusively used as transportation fuel, biogas is mostly used for production of electricity and heat. The application of more sophisticated purification techniques in production of pure biomethane from biogas allows its delivery to natural gas grid and its subsequent use as transportation fuel. While biogas is produced mostly from waste materials (landfills, manure, sludge from wastewater treatment, agricultural waste), biodiesel in the EU is mostly produced from rapeseed or other oil crops that are used as food, which raises the ā€˜food or fuelā€™ concerns. To mitigate this problem, considerable efforts have been made to use non-food feedstock for biodiesel production. These include all kinds of waste oils and fats, but recently more attention has been devoted to production of microbial oils by cultivation of microorganisms that are able to accumulate high amounts of lipids in their biomass. Promising candidates for microbial lipid production can be found among different strains of filamentous fungi, yeast, bacteria and microalgae. Feedstocks of interest are agricultural waste rich in carbohydrates as well as different lignocellulosic raw materials where some technical issues have to be resolved. In this work, recovery and purification of biodiesel and biogas are also considered

    Recent Trends in Biodiesel and Biogas Production

    Get PDF
    Biodizel i bioplin dva su vrlo važna izvora obnovljive energije Å”irom svijeta, a posebice u zemljama EU. Biodizel se gotovo isključivo koristi kao transportno gorivo, dok se bioplin uglavnom koristi za proizvodnju električne energije i topline. Primjena sofisticiranijih tehnika pročiŔćavanja u proizvodnji čistog biometana iz bioplina omogućuje njegovo uvođenje u mrežu prirodnog plina i daljnju uporabu kao transportno gorivo. Dok se bioplin uglavnom proizvodi od otpadnih materijala (materijal s odlagaliÅ”ta otpada, gnojivo, talog zaostao pročiŔćavanjem otpadnih voda, poljoprivredni otpad), biodizel se u EU uglavnom dobiva iz repice ili drugih uljarica koje se koriste kao hrana, Å”to dovodi u pitanje njihovu ulogu kao hrane ili goriva. Kako bi se ublažio ovaj problem, napravljeni su značajni napori u koriÅ”tenju neprehrambenih sirovina za proizvodnju biodizela. To uključuje sve vrste otpadnih ulja i masti, no od nedavno se viÅ”e pažnje posvećuje proizvodnji mikrobnih ulja uzgojem mikroorganizama koji mogu akumulirati velike količine lipida u biomasi. Obećavajući kandidati za mikrobnu proizvodnju lipida mogu se pronaći među različitim sojevima filamentoznih plijesni, kvasaca, bakterija i mikroalgi. Sirovine od interesa su i poljoprivredni otpad bogat ugljikohidratima te različite lignocelulozne sirovine, za čiju se uporabu joÅ” uvijek moraju rijeÅ”iti neka tehnička pitanja. Također, u ovom su radu razmatrane metode izdvajanja i pročiŔćavanja biodizela i bioplina.Biodiesel and biogas are two very important sources of renewable energy worldwide, and particularly in the EU countries. While biodiesel is almost exclusively used as transportation fuel, biogas is mostly used for production of electricity and heat. The application of more sophisticated purification techniques in production of pure biomethane from biogas allows its delivery to natural gas grid and its subsequent use as transportation fuel. While biogas is produced mostly from waste materials (landfills, manure, sludge from wastewater treatment, agricultural waste), biodiesel in the EU is mostly produced from rapeseed or other oil crops that are used as food, which raises the ā€˜food or fuelā€™ concerns. To mitigate this problem, considerable efforts have been made to use non-food feedstock for biodiesel production. These include all kinds of waste oils and fats, but recently more attention has been devoted to production of microbial oils by cultivation of microorganisms that are able to accumulate high amounts of lipids in their biomass. Promising candidates for microbial lipid production can be found among different strains of filamentous fungi, yeast, bacteria and microalgae. Feedstocks of interest are agricultural waste rich in carbohydrates as well as different lignocellulosic raw materials where some technical issues have to be resolved. In this work, recovery and purification of biodiesel and biogas are also considered

    Bioethanol Production from Renewable Raw Materials and Its Separation and Purification: A Review

    Get PDF
    Proizvodnja biogoriva iz obnovljivih sirovina privukla je pažnju znanstvenika jer može poslužiti za opskrbu energijom i alternativnim gorivima. Bioetanol je jedno od najzanimljivijih biogoriva zbog njegovog pozitivnog utjecaja na okoliÅ”. NajčeŔće se proizvodi iz sirovina koje sadržavaju Å”ećer i Å”krob. Međutim, razni izvori lignocelulozne biomase, kao Å”to su poljoprivredni i Å”umski ostaci te zeljasti energetski usjevi, također mogu poslužiti kao sirovine za proizvodnju bioetanola, energije, topline i kemikalija s dodanom vrijednoŔću. Lignoceluloza je složena mjeÅ”avina ugljikohidrata, koju treba učinkovito prethodno obraditi da bi se oslobodili biotransformacijski putevi u kojima enzimi proizvode fermentabilne Å”ećere Å”to nakon hidrolize fermentiraju u etanol. Unatoč tehničkim i ekonomskim poteÅ”koćama, obnovljive lignocelulozne sirovine imaju nisku cijenu te ne utječu na hranu i prehrambeni lanac, čime potiču održivost. Za proizvodnju bioetanola iz obnovljivih sirovina razvijeni su različiti načini rada bioprocesora. Osim toga, intenzivno se razvijaju i alternativni postupci odvajanja i pročiŔćavanja bioetanola. Ovaj rad daje pregled novih trendova u proizvodnji bioetanola iz različitih obnovljivih sirovina, te postupaka njegovog odvajanja i pročiŔćavanja.Production of biofuels from renewable feedstocks has captured considerable scientific attention since they could be used to supply energy and alternative fuels. Bioethanol is one of the most interesting biofuels due to its positive impact on the environment. Currently, it is mostly produced from sugar- and starch-containing raw materials. However, various available types of lignocellulosic biomass such as agricultural and forestry residues, and herbaceous energy crops could serve as feedstocks for the production of bioethanol, energy, heat and value-added chemicals. Lignocellulose is a complex mixture of carbohydrates that needs an efficient pretreatment to make accessible pathways to enzymes for the production of fermentable sugars, which after hydrolysis are fermented into ethanol. Despite technical and economic difficulties, renewable lignocellulosic raw materials represent low-cost feedstocks that do not compete with the food and feed chain, thereby stimulating the sustainability. Different bioprocess operational modes were developed for bioethanol production from renewable raw materials. Furthermore, alternative bioethanol separation and purification processes have also been intensively developed. This paper deals with recent trends in the bioethanol production as a fuel from different renewable raw materials as well as with its separation and purification processes

    Positive socio-economic and ecological effects of biogas production by anaerobic digestion

    Get PDF
    Glavni proizvod anaerobne digestije je bioplin, koji je obnovljivo gorivo, a sporedni proizvod ovog procesa je digestat, koji se koristi kao gnojivo bogato hranjivim tvarima. Dodatni pozitivni učinci anaerobne digestije su razgradnja organskog otpada te smanjenje neugodnih mirisa i koncentracije patogenih mikroorganizama. Bioplin se uglavnom koristi za proizvodnju električne energije i topline, a u nekim slučajevima se pročiŔćava da bi se dobio biometan koji se koristi u mreži prirodnog plina, kao gorivo za motore s unutarnjim sagorijevanjem ili kao polazna kemikalija za kemijsku industriju. Zbog svega navedenog, razvoj proizvodnje bioplina ima pozitivne druÅ”tveno-ekonomske i ekoloÅ”ke učinke. Bioplin proizveden u Hrvatskoj većinom se koristi za proizvodnju električne i toplinske energije u kogeneracijskim postrojenjima. Iako su u Hrvatskoj dostupne različite obnovljive sirovine koje bi se mogle iskoristiti za proizvodnju bioplina, njihov je potencijal do sada bio nedovoljno iskoriÅ”ten. Kao sirovine za proizvodnju bioplina u nas se pretežno koriste gnojovka i nusproizvodi poljoprivrede, klaonica i prehrambene industrije. Racionalnijim koriÅ”tenjem zemljiÅ”ta i razvojem prehrambene industrije mogla bi se povećati količina poljoprivrednih ostataka i nusproizvoda koji nastaju preradom hrane. Usmjeravanjem i poticanjem koriÅ”tenja ovih nusproizvoda za anaerobnu digestiju može se stimulirati brži razvoj proizvodnje bioplina u Hrvatskoj. Pored mogućeg povećanja vlastite proizvodnje električne energije i goriva, radi se o ekoloÅ”ki povoljnoj tehnologiji koja ima pozitivan druÅ”tveno-ekonomski učinak.The main product of anaerobic digestion is biogas, which is a renewable fuel, and the by-product of this process is digestate, which is used as a nutrient-rich fertilizer. Additional positive effects of anaerobic digestion are the decomposition of organic waste and the reduction of unpleasant odors and the concentration of pathogenic microorganisms. Biogas is mainly used for the production of electricity and heat, and in some cases it is purified to obtain biomethane which is used in the natural gas network, as a fuel for internal combustion engines or as a starting chemical for the chemical industry. Due to all of the above, the development of biogas production has positive socio-economic and ecological effects. Biogas produced in Croatia is mostly used for the production of electricity and thermal energy at cogeneration plants. Although various renewable raw materials are available in Croatia that could be used for biogas production, their potential has been underutilized until now. Manure and by-products of agriculture, slaughterhouses and the food industry are mainly used as raw materials for the production of biogas in our country. More rational use of land and development of the food industry could increase the amount of agricultural residues and by-products resulting from food processing. Directing and encouraging the use of these by-products for biogas production can stimulate a faster development of biogas production in our Croatia. In addition to the possible increase in own production of electricity and fuel, it is an environmentally friendly technology that has a positive socio-economic effect

    Mathematical modelling of bioethanol production from raw sugar beet cossettes in a horizontal rotating tubular bioreactor

    Get PDF
    Alternative to the use of fossil fuels are biofuels (e.g., bioethanol, biodiesel and biogas), which are more environmentally friendly and which can be produced from different renewable resources. In this investigation, bioethanol production from raw sugar beet cossettes (semi-solid substrate) by yeast Saccharomyces cerevisiae in a horizontal rotating tubular bioreactor (HRTB) was studied. Obtained results show that HRTB rotation mode (constant or interval) and rotation speed have considerable impact on the efficiency of bioethanol production in the HRTB. The main goal of this research was to develop a non-structural mathematical model of bioethanol production from raw sugar beet cossettes in the HRTB. The established mathematical model of bioethanol production in the HRTB describes substrate utilization and product formation (glycerol, ethanol and acetate) and presumes negative impact of high substrate concentration on the working microorganism (substrate inhibition) by using Andrews inhibition kinetics. All simulations of bioethanol production in the HRTB were performed by using Berkeley Madonna software, version 8.3.14 (Berkeley Madonna, Berkeley, CA, USA). The established non-structural bioprocess model describes relatively well the bioethanol production from raw sugar beet cossettes in the HRTB

    Mycelium cultivation of the mushroom Pleurotus ostreatus on beech sawdust

    No full text
    Otpad nastao preradom bukve (lat. Fagus sylvatica) jedna je od lignoceluloznih sirovina na kojima se može temeljiti razvoj budućih biotehnoloÅ”kih procesa u Republici Hrvatskoj. Stoga je u ovom radu koriÅ”tena bukova piljevina kao glavna sirovina za uzgoj na čvrstom supstratu. Kao radni organizam je koriÅ”tena gljiva Pleurotus ostreatus (hrv. bukovača) koja zahvaljujući svom lignolitičkom sustavu selektivno razgrađuje lignin i hemicelulozu i može naći viÅ”estruku biotehnoloÅ”ku primjenu. Tijekom 6 tjedana uzgoja u malom mjerilu u podlozi sa 60 % vlage pri prosječnoj temperaturi 27 Ā°C povremeno je provedeno protresanje podloge, pri čemu je vizualno praćen rast biomase, a kemijske analize, FTIR-spektri i mikroskopsko promatranje uzoraka su napravljeni u odgovarajućim vremenskim intervalima tijekom uzgoja micelija. Unatoč protresanju, micelij je rastao vrlo sporo jer su prevladavali anaerobni uvjeti zbog malih dimenzija čestica piljevine i velike vlažnosti podloge. Stoga nije bilo značajnih promjena sastava hranjive podloge kao ni značajnih razlika u dobivenim FTIR-spektrima.Waste generated by the processing of beech (lat. Fagus sylvatica) is one of the lignocellulosic materials that can be used in the development of future biotechnological processes in the Republic of Croatia. Therefore, we used beech sawdust as the main raw material for the solid-state cultivation. As the working organism, we used the mushroom Pleurotus ostreatus (oyster mushroom), which, thanks to its ligninolytic system, selectively degrades lignin and hemicellulose and has multiple biotechnological applications. During the 6 weeks of small-scale cultivation, in a medium with 60% humidity and at an average temperature of 27Ā°C, the bottles containing the medium were periodically shaken, during which we visually monitored the biomass growth. The chemical analyses, FTIR spectra and microscopic observations of the samples were made at appropriate intervals throughout the mycelium cultivation. Despite the shaking, the mycelium grew very slowly because of the prevailing anaerobic conditions due to the small size of the sawdust particles and the high humidity. Therefore, there were no significant changes in the chemical composition of the culture medium or significant differences in the FTIR spectra

    Mycelium cultivation of the mushroom Pleurotus ostreatus on beech sawdust

    No full text
    Otpad nastao preradom bukve (lat. Fagus sylvatica) jedna je od lignoceluloznih sirovina na kojima se može temeljiti razvoj budućih biotehnoloÅ”kih procesa u Republici Hrvatskoj. Stoga je u ovom radu koriÅ”tena bukova piljevina kao glavna sirovina za uzgoj na čvrstom supstratu. Kao radni organizam je koriÅ”tena gljiva Pleurotus ostreatus (hrv. bukovača) koja zahvaljujući svom lignolitičkom sustavu selektivno razgrađuje lignin i hemicelulozu i može naći viÅ”estruku biotehnoloÅ”ku primjenu. Tijekom 6 tjedana uzgoja u malom mjerilu u podlozi sa 60 % vlage pri prosječnoj temperaturi 27 Ā°C povremeno je provedeno protresanje podloge, pri čemu je vizualno praćen rast biomase, a kemijske analize, FTIR-spektri i mikroskopsko promatranje uzoraka su napravljeni u odgovarajućim vremenskim intervalima tijekom uzgoja micelija. Unatoč protresanju, micelij je rastao vrlo sporo jer su prevladavali anaerobni uvjeti zbog malih dimenzija čestica piljevine i velike vlažnosti podloge. Stoga nije bilo značajnih promjena sastava hranjive podloge kao ni značajnih razlika u dobivenim FTIR-spektrima.Waste generated by the processing of beech (lat. Fagus sylvatica) is one of the lignocellulosic materials that can be used in the development of future biotechnological processes in the Republic of Croatia. Therefore, we used beech sawdust as the main raw material for the solid-state cultivation. As the working organism, we used the mushroom Pleurotus ostreatus (oyster mushroom), which, thanks to its ligninolytic system, selectively degrades lignin and hemicellulose and has multiple biotechnological applications. During the 6 weeks of small-scale cultivation, in a medium with 60% humidity and at an average temperature of 27Ā°C, the bottles containing the medium were periodically shaken, during which we visually monitored the biomass growth. The chemical analyses, FTIR spectra and microscopic observations of the samples were made at appropriate intervals throughout the mycelium cultivation. Despite the shaking, the mycelium grew very slowly because of the prevailing anaerobic conditions due to the small size of the sawdust particles and the high humidity. Therefore, there were no significant changes in the chemical composition of the culture medium or significant differences in the FTIR spectra

    Development of a bio-refinery system for biofuels and biochemicals production from waste lignocellulose-containing feedstocks

    No full text
    Biorafinerije su postrojenja za pretvorbu obnovljive biomase u različite kemikalije, materijale i goriva. Cilj biorafinerija je maksimalno iskoriÅ”tavanje svih sastojaka biomase za proizvodnju primarnih i različitih sekundarnih proizvoda veće dodane vrijednosti. U ovom istraživanju razvijen je novi održivi biorafinerijski sustav za proizvodnju biogoriva i biokemikalija iz otpadnih lignoceluloznih sirovina. Primjenom fizikalno-kemijskih i enzimskih metoda provedena je uspjeÅ”na predobrada različitih lignoceluloznih sirovina. U hranjivim podlogama dobivenima nakon kiselinske hidrolize kukuruznih oklasaka u visokotlačnom reaktoru i enzimske hidrolize predobrađenih kukuruznih oklasaka provedeni su bioprocesi s plijesni Mucor indicus DSM 2185 u tri laboratorijska bioreaktora različitih konstrukcija, te su proizvedene biokemikalije kao Å”to su etanol, ksilitol i glicerol. Dodatno, nusproizvodi pojedinih postupaka proizvodnje enzima ili baznih kemikalija, kao Å”to su tekući ostaci hranjivih podloga i biomasa plijesni, koriÅ”teni su za proizvodnju biomase nesumpornih ljubičastih bakterija (izolacija pigmenata) i izopropanola, te za izolaciju biomaterijala (hitina, hitozana i masnih kiselina) podupirući dodatno biorafinerijski sustav proizvodnje različitih bioproizvoda, a težeći principu tzv. ā€žzero wasteā€œ biorafinerije. Materijalnom bilancom je ustanovljeno da su za proizvodnju 1 kg etanola potrebna 7,48 kg kukuruznih oklasaka i 150,35 L 0,5% sumporne kiseline. Osim etanola dobiveno je i 2,39 kg izopropanola i 1,27 kg octene kiseline, dok je iz biomase plijesni i bakterija moguće izolirati 0,21 kg hitina, 0,14 kg hitozana, 0,18 kg masnih kiselina i 6,73 g pigmenata.Biorefineries are plants used for the conversion of renewable biomass into various chemicals, materials, and fuels. The goal of biorefineries is the maximum utilization of all biomass components to produce primary and various secondary products of higher added value. In this research, a new sustainable biorefinery system for the production of biofuels and biochemicals from waste lignocellulosic raw materials was developed. Pre-processing of various lignocellulosic raw materials was performed using physio-chemical and enzymatic methods. In the substrates, obtained after acid hydrolysis of corn cobs in a high-pressure reactor and enzymatic hydrolysis of pre-treated corn cobs, bioprocesses were performed using Mucor indicus DSM 2185 as the working microorganism in three different types of laboratory bioreactors, which resulted in the production of different biochemicals such as bioethanol, xylitol, and glycerol. In addition, by-products of certain processes like the by-products of the enzyme production process or chemical production processes, such as waste media and mold biomass were respectively used, for the production of non-sulfur purple bacteria biomass (pigment isolation) and isopropanol production, and for different biomaterial isolation (chitin, chitosan, and fatty acids) which contributed to the approach of producing a range of different organic products and striving for the principle of so-called zero waste biorefineries. The material balance established that the production of 1 kg of ethanol requires 7,48 kg of corn cobs and 150,35 L of 0.5% sulfuric acid. In addition to ethanol, it is possible to obtain 2.39 kg of isopropanol and 1.27 kg of acetic acid. From the mold and bacterial biomass, it is possible to isolate 0.21 kg of chitin, 0.14 kg of chitosan, 0.18 kg of fatty acids, and 6.73 g of pigments
    corecore