21 research outputs found

    Utilización de germen de malta y granos secos de cerveceria en la alimentación de cerdos en las etapas de crecimiento y acabado.

    Get PDF
    El experimento se realiza en la Sabana de Bogotá, con 40 cerdos mestizos Landrace x Duroc, alojados en 10 corrales. Los animales se distribuyen en un diseño de bloques al azar, repartidos en 2 grupos: liviano y pesado, con un peso de 17 y 27.1 kg respectivamente, a los cuales se suministran los siguientes tratamientos: 1, dieta control con torta de soya y torta de algodón, 2, dieta con 15 por ciento de germen de malta, 3, dieta con 20 por ciento de germen de malta, 4, dieta con 15 por ciento de granos secos de cerveceria, 5, dieta con 20 por ciento de granos secos de cervecería. Se hace análisis bromatológico de estos subproductos con los siguientes resultados: germen de malta: proteína total, 28.1 por ciento, grasa, 1.5 por ciento, fibra, 14.4 por ciento y cenizas, 5.5 por ciento. Granos secos de cervecería: proteína total, 30.2 por ciento, grasa, 8 por ciento, fibra, 21 por ciento, cenizas, 4.2 por ciento. Los controles de los parámetros estudiados se realizan en 2 períodos: crecimiento hasta los 47 kg y acabado de 47 a 89 kg para una mejor utilización de los datos se consideran en los dos periodos en conjunto. No se observan diferencias estadísticamente significativas en el aumento diario promedio de peso, el consumo diario de alimento y en eficiencias alimenticias. Los mejores rendimientos en canal, 83 por ciento se observaron en los animales de los tratamientos 1 y 4. Se concluye que suministrando niveles del 15 y 20 por ciento de germen de malta y granos secos de cervecería, no se afectan la ganancia diaria de peso, el consumo de alimento, la eficiencia alimenticia y la calidad de la canalPorcicultur

    Genomic epidemiology of NDM-1-encoding plasmids in latin American clinical isolates reveals insights into the evolution of multidrug resistance

    Get PDF
    Bacteria that produce the broad-spectrum Carbapenem antibiotic NewDelhi Metallo-b-lactamase (NDM) place a burden on health care systems worldwide, due to the limited treatment options for infections caused by them and the rapid global spread of this antibiotic resistancemechanism.Although it is believed that theassociated resistancegenebla NDM-1 originated inAcinetobacter spp., the role of Enterobacteriaceae in its dissemination remains unclear. In this study, we usedwhole genome sequencing to investigate the dissemination dynamics of blaNDM-1-positive plasmids in a set of 21 clinical NDM-1-positive isolates from Colombia and Mexico (Providencia rettgeri, Klebsiella pneumoniae, and Acinetobacter baumannii) aswell as six representative NDM-1-positive Escherichia coli transconjugants. Additionally, the plasmids from three representative P. rettgeri isolates were sequenced by PacBio sequencing and finished. Our results demonstrate the presence of previously reported plasmids from K. pneumoniae and A. baumannii in different genetic backgrounds and geographically distant locations in Colombia. Three new previously unclassified plasmids were also identified in P. rettgeri from Colombia and Mexico, plus an interesting genetic link between NDM-1-positive P. rettgeri from distant geographic locations (Canada, Mexico, Colombia, and Israel) without any reported epidemiological links was discovered. Finally, we detected a relationship between plasmids present in P. rettgeri and plasmids from A. baumannii and K. pneumoniae. Overall, our findings suggest a Russian dollmodel for the dissemination of blaNDM-1 in LatinAmerica,with P. rettgeri playing a central role in this process, andrevealnewinsights into the evolution and disseminationof plasmids carrying such antibiotic resistance genes

    Neuronal nitric oxide synthase immunoreactivity in the respiratory tract of the frog, Rana temporaria

    No full text
    Physiological and histochemical studies have recently supported the notion that nitric oxide (NO) is the transduction signal responsible for the non-adrenergic, non-cholinergic relaxation of the vasculature as well as the airways of the mammalian lung. We report the presence of immunoreactivity to NO synthase (NOS) in nerve cell bodies and nerve fibres in the neural plexus of the buccal cavity and lungs of the frog, Rana temporaria, using the indirect immunocytochemical technique of avidin-biotin and the NADPH-diaphorase technique. The neural ganglia located next to the muscle layer and within the connective tissue of the buccal cavity were partially immunoreactive for NOS. In the lungs, NOS immunoreactivity occurred in nerve cell bodies, as well as in both myelinated and unmyelinated nerve fibres. Fine nerve fibres immunoreactive to NOS were observed within the muscle fibre bundles and next to the respiratory epithelium. Both the presence of NOS immunoreactivity and the positive histochemical reaction for NADPH-diaphorase in the neural plexus of amphibian respiratory tract suggests a broad evolutionary role for NO as a peripheral neurotransmitter

    Neuronal nitric oxide synthase immunoreactivity in the respiratory tract of the frog, Rana temporaria

    No full text
    Physiological and histochemical studies have recently supported the notion that nitric oxide (NO) is the transduction signal responsible for the non-adrenergic, non-cholinergic relaxation of the vasculature as well as the airways of the mammalian lung. We report the presence of immunoreactivity to NO synthase (NOS) in nerve cell bodies and nerve fibres in the neural plexus of the buccal cavity and lungs of the frog, Rana temporaria, using the indirect immunocytochemical technique of avidin-biotin and the NADPH-diaphorase technique. The neural ganglia located next to the muscle layer and within the connective tissue of the buccal cavity were partially immunoreactive for NOS. In the lungs, NOS immunoreactivity occurred in nerve cell bodies, as well as in both myelinated and unmyelinated nerve fibres. Fine nerve fibres immunoreactive to NOS were observed within the muscle fibre bundles and next to the respiratory epithelium. Both the presence of NOS immunoreactivity and the positive histochemical reaction for NADPH-diaphorase in the neural plexus of amphibian respiratory tract suggests a broad evolutionary role for NO as a peripheral neurotransmitter

    Uroguanylin prevents hepatic steatosis, mitochondrial dysfunction and fibrosis in obesity-associated NAFLD

    No full text
    Background: The biological mediators supporting the resolution of liver steatosis, inflammation and fibrosis after bariatric surgery in patients with obesity and NAFLD remain unclear. We sought to analyze whether uroguanylin and guanylin, two gut hormones involved in the regulation of satiety, food preference and adiposity, are involved in the amelioration of obesity-associated NAFLD after bariatric surgery. Methods: Proguanylin (GUCA2A) and prouroguanylin (GUCA2B) were measured in 214 participants undergoing bariatric surgery with biopsy-proven NAFLD diagnosis. Pathways involved in lipid metabolism, mitochondrial network and fibrogenesis were evaluated in liver biopsies (n = 137). The effect of guanylin and uroguanylin on these metabolic functions was assessed in HepG2 hepatocytes and LX-2 hepatic stellate cells (HSC) under lipotoxic and profibrogenic conditions. Results: Plasma and hepatic expression of GUCA2B were decreased in obesity-associated NAFLD. Both GUCA2A and GUCA2B levels were increased after sleeve gastrectomy and Roux-en-Y gastric bypass in parallel to the improved liver function. The liver of patients with type 2 diabetes showed impaired mitochondrial β-oxidation, biogenesis, dynamics as well as increased fibrosis. Uroguanylin diminished the lipotoxicity in palmitate-treated HepG2 hepatocytes, evidenced by decresased steatosis and lipogenic factors, as well as increased mitochondrial network expression, AMPK-induced β-oxidation and oxygen consumption rate. Additionally, uroguanylin, but not guanylin, reversed HSC myofibroblast transdifferentiation as well as fibrogenesis after TGF-β1 stimulation. Conclusions: Uroguanylin constitutes a protective factor against lipotoxicity, mitochondrial dysfunction and fibrosis. Increased GUCA2B levels might contribute to improve liver injury in patients with obesity-associated NAFLD after bariatric surgery

    Uroguanylin prevents hepatic steatosis, mitochondrial dysfunction and fibrosis in obesity-associated NAFLD

    No full text
    Background: The biological mediators supporting the resolution of liver steatosis, inflammation and fibrosis after bariatric surgery in patients with obesity and NAFLD remain unclear. We sought to analyze whether uroguanylin and guanylin, two gut hormones involved in the regulation of satiety, food preference and adiposity, are involved in the amelioration of obesity-associated NAFLD after bariatric surgery. Methods: Proguanylin (GUCA2A) and prouroguanylin (GUCA2B) were measured in 214 participants undergoing bariatric surgery with biopsy-proven NAFLD diagnosis. Pathways involved in lipid metabolism, mitochondrial network and fibrogenesis were evaluated in liver biopsies (n = 137). The effect of guanylin and uroguanylin on these metabolic functions was assessed in HepG2 hepatocytes and LX-2 hepatic stellate cells (HSC) under lipotoxic and profibrogenic conditions. Results: Plasma and hepatic expression of GUCA2B were decreased in obesity-associated NAFLD. Both GUCA2A and GUCA2B levels were increased after sleeve gastrectomy and Roux-en-Y gastric bypass in parallel to the improved liver function. The liver of patients with type 2 diabetes showed impaired mitochondrial β-oxidation, biogenesis, dynamics as well as increased fibrosis. Uroguanylin diminished the lipotoxicity in palmitate-treated HepG2 hepatocytes, evidenced by decresased steatosis and lipogenic factors, as well as increased mitochondrial network expression, AMPK-induced β-oxidation and oxygen consumption rate. Additionally, uroguanylin, but not guanylin, reversed HSC myofibroblast transdifferentiation as well as fibrogenesis after TGF-β1 stimulation. Conclusions: Uroguanylin constitutes a protective factor against lipotoxicity, mitochondrial dysfunction and fibrosis. Increased GUCA2B levels might contribute to improve liver injury in patients with obesity-associated NAFLD after bariatric surgery
    corecore