3 research outputs found

    Classification of follicular-patterned thyroid lesions using a minimal set of epigenetic biomarkers

    Get PDF
    [Objective]: The minimally invasive fine-needle aspiration cytology (FNAC) is the current gold standard for the diagnosis of thyroid nodule malignancy. However, the correct discrimination of follicular neoplasia often requires more invasive diagnostic techniques. The lack of suitable immunohistochemical markers to distinguish between follicular thyroid carcinoma and other types of follicular-derived lesions complicates diagnosis, and despite most of these tumours being surgically resected, only a small number will test positive for malignancy. As such, the development of new orthogonal diagnostic approaches may improve the accuracy of diagnosing thyroid nodules.[Design]: This study includes a retrospective, multi-centre training cohort including 54 fresh-frozen follicular-patterned thyroid samples and two independent, multi-centre validation cohorts of 103 snap-frozen biopsies and 33 FNAC samples, respectively.[Methods]: We performed a genome-wide genetic and epigenetic profiling of 54 fresh-frozen follicular-patterned thyroid samples using exome sequencing and the Illumina Human DNA Methylation EPIC platform. An extensive validation was performed using the bisulfite pyrosequencing technique.[Results]: Using a random forest approach, we developed a three-CpG marker-based diagnostic model that was subsequently validated using bisulfite pyrosequencing experiments. According to the validation cohort, this cost-effective method discriminates between benign and malignant nodules with a sensitivity and specificity of 97 and 88%, respectively (positive predictive value (PPV): 0.85, negative predictive value (NPV): 0.98).[Conclusions]: Our classification system based on a minimal set of epigenetic biomarkers can complement the potential of the diagnostic techniques currently available and would prioritize a considerable number of surgical interventions that are often performed due to uncertain cytology.[Significance statement]: In recent years, there has been a significant increase in the number of people diagnosed with thyroid nodules. The current challenge is their etiological diagnosis to discount malignancy without resorting to thyroidectomy. The method proposed here, based on DNA pyrosequencing assays, has high sensitivity (0.97) and specificity (0.88) for the identification of malignant thyroid nodules. This simple and cost-effective approach can complement expert pathologist evaluation to prioritize the classification of difficult-to-diagnose follicular-patterned thyroid lesions and track tumor evolution, including real-time monitoring of treatment efficacy, thereby stimulating adherence to health promotion programs.Peer reviewe

    Hsa‐miR‐139‐5p is a prognostic thyroid cancer marker involved in HNRNPF‐mediated alternative splicing

    No full text
    It is critical to identify biomarkers and functional networks associated with aggressive thyroid cancer to anticipate disease progression and facilitate personalized patient management. We performed miRNome sequencing of 46 thyroid tumors enriched with advanced disease patients with a median follow-up of 96 months. MiRNome profiles correlated with tumor-specific histopathological and molecular features, such as stromal cell infiltration and tumor driver mutation. Differential expression analysis revealed a consistent hsa-miR-139-5p downexpression in primary carcinomas from patients with recurrent/metastatic disease compared to disease-free patients, sustained in paired local metastases and validated in publicly available thyroid cancer series. Exogenous expression of hsa-miR-139-5p significantly reduced migration and proliferation of anaplastic thyroid cancer cells. Proteomic analysis indicated RICTOR, SMAD2/3 and HNRNPF as putative hsa-miR-139-5p targets in our cell system. Abundance of HNRNPF mRNA, encoding an alternative splicing factor involved in cryptic exon inclusion/exclusion, inversely correlated with hsa-miR-139-5p expression in human tumors. RNA sequencing analysis revealed 174 splicing events differentially regulated upon HNRNPF repression in our cell system, affecting genes involved in RTK/RAS/MAPK and PI3K/AKT/MTOR signaling cascades among others. These results point at the hsa-miR-139-5p/HNRNPF axis as a novel regulatory mechanism associated with the modulation of major thyroid cancer signaling pathways and tumor virulence.CAM; Grant numbers: S2017/BMD-3724, TIRONET2-CM; Grant sponsor: Fundacion Cientifica Asociacion Espanola Contra el Cancer; Grant number: AIO15152858; Grant sponsor: Instituto de Salud Carlos III (ISCIII), Accion Estrategica en Salud, cofinanciado a traves del Fondo Europeo de Desarrollo Regional (FEDER); Grant numbers: PI14/00240, PI17/01796S
    corecore