5 research outputs found

    Knowledge of Rare Respiratory Diseases among Paediatricians and Medical School Students

    No full text
    Alpha-1-antitrypsin deficiency (AATD) and primary ciliary dyskinesia (PCD) are underdiagnosed rare diseases showing a median diagnostic delay of five to ten years, which has negative effects on patient prognosis. Lack of awareness and education among healthcare professionals involved in the management of these patients have been suggested as possible causes. Our aim was to assess knowledge of these diseases among paediatricians and medical school students to determine which knowledge areas are most deficient. A survey was designed with questions testing fundamental aspects of the diagnosis and treatment of AATD and PCD. A score equal to or greater than 50% of the maximum score was set as the level necessary to ensure a good knowledge of both diseases. Our results indicate a profound lack of knowledge of rare respiratory diseases among paediatric professionals and medical students, suggesting that it is necessary to increase rare respiratory diseases training among all physicians responsible for suspecting and diagnosing them; this will allow early diagnosis and the setup of preventive measures and appropriate early-stage treatment. The first step in closing this knowledge gap could be to include relevant material in the medical syllabus

    Origin, functional role, and clinical impact of Fanconi anemia FANCA mutations

    No full text
    Fanconi anemia is characterized by congenital abnormalities, bone marrow failure, and cancer predisposition. To investigate the origin, functional role, and clinical impact of FANCA mutations, we determined a FANCA mutational spectrum with 130 pathogenic alleles. Some of these mutations were further characterized for their distribution in populations, mode of emergence, or functional consequences at cellular and clinical level. The world most frequent FANCA mutation is not the result of a mutational “hot-spot” but results from worldwide dissemination of an ancestral Indo-European mutation. We provide molecular evidence that total absence of FANCA in humans does not reduce embryonic viability, as the observed frequency of mutation carriers in the Gypsy population equals the expected by Hardy-Weinberg equilibrium. We also prove that long distance Alu-Alu recombination can cause Fanconi anemia by originating large interstitial deletions involving FANCA and 2 adjacent genes. Finally, we show that all missense mutations studied lead to an altered FANCA protein that is unable to relocate to the nucleus and activate the FA/BRCA pathway. This may explain the observed lack of correlation between type of FANCA mutation and cellular phenotype or clinical severity in terms of age of onset of hematologic disease or number of malformations
    corecore