27 research outputs found

    Biodiversity Studies in Key Species from the African Mopane and Miombo Woodlands

    Get PDF
    The Southern African Miombo-Mopane woodlands are globally considered as ecosystems with irreplaceable species endemism, being the most important type of vegetation in the region. Among the approximately 8500 plant species, legume trees play a crucial role in biodiversity dynamics, being also key socioeconomic and environmental players. From the ecological point of view, they contribute significantly to ecosystem’s stability as well as to water, carbon, and energy balance. Additionally, legume species represent an immensurable source of timber and nontimber products. Research in Miombo-Mopane biodiversity has been mainly focused on the analysis of ecosystem drivers by means of ecological parameters and models, lacking interdisciplinary with relevant cross-cutting tools, such as the application of molecular markers to assess genetic diversity within the region. In this chapter, the applications and biodiversity dynamics of typical legume species from Miombo (Brachystegia spp., Julbernardia globiflora, and Pterocarpus angolensis) and Mopane (Colophospermum mopane) are reviewed. Gaps and challenges are also brought forward in the context of the lack of genetic diversity assessments and the need of an effective and coordinated network of interdisciplinary research

    Characterization of the primary matabolome of Brachystegia boehmii and Colophospermum mopane under different fire regimes in Miombo and Mopane African woodlands

    Get PDF
    Original ResearchMiombo and Mopane are ecological and economic important woodlands from Africa, highly affected by a combination of climate change factors, and anthropogenic fires. Although most species of these ecosystems are fire tolerant, the mechanisms that lead to adaptive responses (metabolic reconfiguration) are unknown. In this context, the aim of this study was to characterize the primary metabolite composition of typical legume trees from these ecosystems, namely, Brachystegia boehmii (Miombo) and Colophospermum mopane (Mopane) subjected to different fire regimes. Fresh leaves from each species were collected in management units and landscapes across varied fire frequencies in the Niassa National Reserve (NNR) and Limpopo National Park (LNP) in Mozambique. Primary metabolites were extracted and analyzed with a well-established gas chromatography time-of-flight mass spectrometry metabolomics platform (GC-TOF-MS). In B. boehmii, 39 primary metabolites were identified from which seven amino acids, two organic acids and two sugars increased significantly, whereas in C. mopane, 41 primary metabolites were identified from which eight amino acids, one sugar and two organic acids significantly increased with increasing fire frequency. The observed changes in the pool of metabolites of C. mopane might be related to high glycolytic and tricarboxylic acid (TCA) rate, which provided increased levels of amino acids and energy yield. In B. boehmii, the high levels of amino acids might be due to inhibition of protein biosynthesis. The osmoprotectant and reactive oxygen species (ROS) scavenging properties of accumulated metabolites in parallel with a high-energy yield might support plants survival under fire stressinfo:eu-repo/semantics/publishedVersio

    Linking Bacterial Rhizosphere Communities of Two Pioneer Species, Brachystegia boehmii and B. spiciformis, to the Ecological Processes of Miombo Woodlands

    Get PDF
    Miombo is the most extensive ecosystem in southern Africa, being strongly driven by fire, climate, herbivory, and human activity. Soils are major regulating and supporting services, sequestering nearly 50% of the overall carbon and comprising a set of yet unexploited functions. In this study, we used next-generation Illumina sequencing to assess the patterns of bacterial soil diversity in two pioneer Miombo species, Brachystegia boehmii and Brachystegia spiciformis, along a fire gradient, in ferric lixisol and cambic arenosol soils. In total, 21 phyla, 51 classes, 98 orders, 193 families, and 520 genera were found, revealing a considerably high and multifunctional diversity with a strong potential for the production of bioactive compounds and nutrient mobilization. Four abundant genera characterized the core microbiome among plant species, type of soils, or fire regime: Streptomyces, Gaiella, Chthoniobacter, and Bacillus. Nevertheless, bacterial networks revealed a higher potential for mutualistic interactions and transmission of chemical signals among phylotypes from low fire frequency sites than those from high fire frequency sites. Ecological networks also revealed the negative effects of frequent fires on the complexity of microbial communities. Functional predictions revealed the core “house-keeping” metabolisms contributing to the high bacterial diversity found, suggesting its importance to the functionality of this ecosystem.info:eu-repo/semantics/publishedVersio

    Genomic evaluation of Coffea arabica and its wild relative Coffea racemosa in Mozambique: settling resilience keys for the Coffee crop in the context of climate change

    Get PDF
    Climate change is negatively affecting the coffee value chain, with a direct effect on approximately 100 million people from 80 countries. This has been attributed to the high vulnerability of the two-mainstream species, Coffea arabica and Coffea canephora, to extreme weather events, with notable uneven increases in market prices. Taking into account the narrow genetic plasticity of the commercial coffee cultivars, wild-relatives and underutilized Coffea species are valuable genetic resources. In this work, we have assessed the occurrence of Coffea species in to understand the degree of genetic relationships between Coffea species in the country, as well as the patterns of genetic diversity, differentiation, and genetic structure. Only one wild species was found, C. racemosa, which showed a high level of genetic separation with C. arabica, based on plastid, as well as SSR and SNP analysis. C. arabica presented low levels of diversity likely related to their autogamous nature, while the allogamous C. racemosa presented higher levels of diversity and heterozygosity. The analysis of the functional pathways based on SNPs suggests that the stress signaling pathways are more robust in this species. This novel approach shows that it is vital to introduce more resilient species and increase genomic diversity in climate-smart practices.This researchwas funded by by Camões, Instituto da Cooperação e da Língua (CICL), Agência Brasileira de Cooperação (ABC), and ParqueNacional da Gorongosa (PNG), under the Triangular Project TriCafé (GorongosaCoffee), and by Fundação para a Ciência e a Tecnologia, I.P. (FCT)info:eu-repo/semantics/publishedVersio

    Applications of Essential Oils as Antibacterial Agents in Minimally Processed Fruits and Vegetables - A Review

    Get PDF
    Microbial foodborne diseases are a major health concern. In this regard, one of the major risk factors is related to consumer preferences for “ready-to-eat” or minimally processed (MP) fruits and vegetables. Essential oil (EO) is a viable alternative used to reduce pathogenic bacteria and increase the shelf-life of MP foods, due to the health risks associated with food chlorine. Indeed, there has been increased interest in using EO in fresh produce. However, more information about EO applications in MP foods is necessary. For instance, although in vitro tests have defined EO as a valuable antimicrobial agent, its practical use in MP foods can be hampered by unrealistic concentrations, as most studies focus on growth reductions instead of bactericidal activity, which, in the case of MP foods, is of utmost importance. The present review focuses on the effects of EO in MP food pathogens, including the more realistic applications. Overall, due to this type of information, EO could be better regarded as an added value to the food industryinfo:eu-repo/semantics/publishedVersio

    potential for soil health improvement anwd plant growth promotion

    Get PDF
    Funding text: This work was supported by funds from Camões, Instituto da Cooperação e da Língua and Fundação para a Ciência e a Tecnologia through the research unit UIDB/00239/2020 (CEF), the PhD grant SFRH/BD/113951/2015 (Ivete Sandra Maquia), and the contribution to the International Rice Research Institute.(1) Aims: Assessing bacterial diversity and plant-growth-promoting functions in the rhizosphere of the native African trees Colophospermum mopane and Combretum apiculatum in three landscapes of the Limpopo National Park (Mozambique), subjected to two fire regimes. (2) Methods: Bacterial communities were identified through Illumina Miseq sequencing of the 16S rRNA gene amplicons, followed by culture dependent methods to isolate plant growth-promoting bacteria (PGPB). Plant growth-promoting traits of the cultivable bacterial fraction were further analyzed. To screen for the presence of nitrogen-fixing bacteria, the promiscuous tropical legume Vigna unguiculata was used as a trap host. The taxonomy of all purified isolates was genetically verified by 16S rRNA gene Sanger sequencing. (3) Results: Bacterial community results indicated that fire did not drive major changes in bacterial abundance. However, culture-dependent methods allowed the differentiation of bacterial communities between the sampled sites, which were particularly enriched in Proteobacteria with a wide range of plant-beneficial traits, such as plant protection, plant nutrition, and plant growth. Bradyrhizobium was the most frequent symbiotic bacteria trapped in cowpea nodules coexisting with other endophytic bacteria. (4) Conclusion: Although the global analysis did not show significant differences between landscapes or sites with different fire regimes, probably due to the fast recovery of bacterial communities, the isolation of PGPB suggests that the rhizosphere bacteria are driven by the plant species, soil type, and fire regime, and are potentially associated with a wide range of agricultural, environmental, and industrial applications. Thus, the rhizosphere of African savannah ecosystems seems to be an untapped source of bacterial species and strains that should be further exploited for bio-based solutions.publishersversionpublishe

    Vegetation structure and effects of human use of Dambos ecosystem in northern Mozambique

    Get PDF
    Original research articleThe Niassa National Reserve (NNR) is the most extensive conservation area in Mozambique and the third largest in Africa, encompassing 42,000 km2 of endemic miombo vegetation. Dambos wetlands occur within the wooded grassland and grassland vegetation of NNR and provide a wide range of Ecosystem Services (ES), including life support for animal species, regulation of water flow and prevention of soil erosion. It also generates income for the livelihoods of local communities by providing land for agriculture and harvesting of non-timber products. The dynamics of these ecosystems is poorly understood despite the contribution of the dambos to global biodiversity and ES. This research is the first preliminary assessment of the vegetation structure and composition of six dambos within NNR, selected using Google Earth, MODIS satellite images and an exploratory field visit. Field data collection was performed using a two-stage systematic sampling approach, along transect lines of 100 10m (0.1 ha), perpendicular to the dambos' flow. Square plots of 0.25m2 were established for grass survey within the transects where grass vegetation was measured, counted and identified. Data were analyzed with R software. The sociological position of each species was analyzed with regard to the vertical structure while for horizontal structure, the abundance, dominance, frequency and Importance Value Index (IVI) were determined. In order to understand the differences between dambos, evenness (H) and reciprocal of Simpson's heterogeneity index (Hill's N2) were calculated. Principal Coordinates Analysis (PCoA) and Cluster Analysis were also used to characterize the surveyed species communities. A total of 58 transects (5.8 ha) and 336 subplots were assessed, recording 110 woody and 73 grass species, respectively. The most common tree species were Vitex doniana, Burkea africana, Syzygium cordatum and Annona senegalensis, while for grass vegetation the most abundant species were Andropogon eucomus and Helictotrichon turgidulum. According to the IVI, the most dominant tree and shrub species were V. doniana, Pseudolachnostylis maprouneifolia, A. senegalensis and S. cordatum. Homogeneity (Hill's N2 ¼18.92) and evenness (H¼ 4.27) were, on average, low in all dambos. Dambo 2 was the most heterogeneous (Hill's N2 ¼18.21) while dambo 1 was the least heterogeneous (Hill's N2 ¼ 5.71). Dambo 6 was most equitable (H¼ 1.35) whereas dambo 2 the least equitable (H¼ 3.72). Using species abundance and based on PCoA and cluster analysis, four main groups of dambos were identified based mainly on the water gradient, with data variation captured by the first three axes reaching almost 83%. The p-value (0.42), suggested no significant differences between species communities in the dambos, and thus, human disturbances appear not to be enough to modify dambos microenvironment. Accordingly, the results suggest that human activities, at this level, do not necessarily affect the structure and diversity of dambos in the NNR. The results also suggest that the species A. senegalensis, Combretum psidioides, Crossopteryx febrifuga, Protea nitida, P. maprouneifolia and S. cordatum can be used as indicator dambo species in NNR, with high likelihood of occurrenceinfo:eu-repo/semantics/publishedVersio

    Cosco en su primer programa -Comunicación pandémica

    No full text
    https://www.youtube.com/watch?v=vL3iXz_ZRO

    Hoy las calles se visten de dolor, de rabia, de indignación y de miedo

    No full text
    ¡Tenemos miedo! Claro que tenemos miedo. Pero ese miedo ya no nos paraliza. Estamos agotadas, pero en medio de ese cansancio encontramos un lugar donde nace la fuerza, un lugar que no tolera más la violencia que se instaló desde hace tiempo en los territorios, en la calle, en nuestras vidas. Estamos cansadas del Señor Matanza que nunca se fue, que amenaza nuestras vidas, que devora nuestras selvas, que patrulla nuestros barrios, que usa la fuerza para legitimar una autoridad carente de sentid..
    corecore