202 research outputs found

    Recurrent boosting effects of short inactivity delays on performance: an ERPs study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies investigating off-line processes of consolidation in motor learning have demonstrated a sudden, short-lived improvement in performance after 5–30 minutes of post-training inactivity. Here, we investigated further this behavioral boost in the context of the probabilistic serial reaction time task, a paradigm of implicit sequence learning. We looked both at the electrophysiological correlates of the boost effect and whether this phenomenon occurs at the initial training session only.</p> <p>Findings</p> <p>Reaction times consistently improved after a 30-minute break within two sessions spaced four days apart, revealing the reproducibility of the boost effect. Importantly, this improvement was unrelated to the acquisition of the sequential regularities in the material. At both sessions, event-related potentials (ERPs) analyses disclosed a boost-associated increased amplitude of a first negative component, and shorter latencies for a second positive component.</p> <p>Conclusion</p> <p>Behavioral and ERP data suggest increased processing fluency after short delays, which may support transitory improvements in attentional and/or motor performance and participate in the final setting up of the neural networks involved in the acquisition of novel skills.</p

    A reversible posterior leucoencephalopathy syndrome including blindness caused by preeclampsia.

    Full text link
    Complications of (pre)eclampsia may involve multiple systems and organs. Neurological symptoms may occur. Visual symptoms concern up to 25% the of patients with severe preeclampsia and 50% of the patients with eclampsia. An uncommon effect of severe preeclampsia is sudden blindness. Blindness may be part of a clinical and radiological presentation named Posterior Reversible Encephalopathy Syndrome (PRES). PRES may lead to permanent neurological deficit, recurrences or death. We report the case of a 24-year-old Caucasian patient, gravida 5 para 2 who developed preeclampsia and PRES complicated with blindness at 32 weeks of gestation. Optimal care allowed visual symptoms to resolve within 24 hours and a favourable maternal outcome and no long- term sequelae. We describe different causes and manifestations of PRES and highlight the need for immediate care in order to optimize the chance of symptoms reversibility

    Offline Persistence of Memory-Related Cerebral Activity during Active Wakefulness

    Get PDF
    Much remains to be discovered about the fate of recent memories in the human brain. Several studies have reported the reactivation of learning-related cerebral activity during post-training sleep, suggesting that sleep plays a role in the offline processing and consolidation of memory. However, little is known about how new information is maintained and processed during post-training wakefulness before sleep, while the brain is actively engaged in other cognitive activities. We show, using functional magnetic resonance imaging, that brain activity elicited during a new learning episode modulates brain responses to an unrelated cognitive task, during the waking period following the end of training. This post-training activity evolves in learning-related cerebral structures, in which functional connections with other brain regions are gradually established or reinforced. It also correlates with behavioral performance. These processes follow a different time course for hippocampus-dependent and hippocampus-independent memories. Our experimental approach allowed the characterization of the offline evolution of the cerebral correlates of recent memories, without the confounding effect of concurrent practice of the learned material. Results indicate that the human brain has already extensively processed recent memories during the first hours of post-training wakefulness, even when simultaneously coping with unrelated cognitive demands

    Multi-strap in-port ICRF antenna modeling and development in support of ITER and EU-DEMO

    Get PDF
    Full-size 3D model of ITER ICRF antenna with 1D plasma electron density (ne) and 3D ne (from EMC3-Eirene) was simulated using the RAPLICASOL (COMSOL-based) code. Impedance matrices and coupled power agree well with TOPICA with 1D ne. Cases with 3D ne show port-to-port differences compared to 1D ne, as well as a lower (about 10%) coupled power. Efficient minimization of ITER antenna near-fields (to reduce RF sheaths by optimizing feeding) calculated by TOPICA and RAPLICASOL is possible with [0;π;π;0] (about balanced strap powers) and is even lower with [0;π;0;π] toroidal phasing (with dominant power from central straps). Lowest near-fields are with [0;π] poloidal phasing, but [0;-π/2] will be used in a load resilience setup with 3dB splitters. Under EUROfusion prospective research and development, in-port ICRF antenna concept for EU-DEMO with 8 quadruplets (4x toroidal by 2x poloidal) is considered to deliver 16.7 MW (3 antennas yielding 50 MW). Areas around the equatorial port and cut-ins in breeding blankets are used, with emphasis on [0;π;π;0] optimization. High-resolution RAPLICASOL calculations with full ne profile (without imposing a minimum ne value) shed light on field distribution with propagative slow wave in detailed antenna geometry

    Cerebral correlates of explicit sequence learning

    Full text link
    peer reviewedUsing positron emission tomography (PET) and regional cerebral blood flow (rCBF) measurements, we investigated the cerebral correlates of consciousness in a sequence learning task through a novel application of the Process Dissociation Procedure, a behavioral paradigm that makes it possible to separately assess conscious and unconscious contributions to performance. Results show that the metabolic response in the anterior cingulate/mesial prefrontal cortex (ACC/MPFC) is exclusively and specifically correlated with the explicit component of performance during recollection of a learned sequence. This suggests a significant role for the ACC/MPFC in the explicit processing of sequential material. © 2003 Elsevier Science B.V. All rights reserved

    Cerebral functional networks during sleep in young and older individuals

    Get PDF
    ABSTRACT: Even though sleep modification is a hallmark of the aging process, age-related changes in functional connectivity using functional Magnetic Resonance Imaging (fMRI) during sleep, remain unknown. Here, we combined electroencephalography and fMRI to examine functional connectivity differences between wakefulness and light sleep stages (N1 and N2 stages) in 16 young (23.1 ± 3.3y; 7 women), and 14 older individuals (59.6 ± 5.7y; 8 women). Results revealed extended, distributed (inter-between) and local (intra-within) decreases in network connectivity during sleep both in young and older individuals. However, compared to the young participants, older individuals showed lower decreases in connectivity or even increases in connectivity between thalamus/basal ganglia and several cerebral regions as well as between frontal regions of various networks. These findings reflect a reduced ability of the older brain to disconnect during sleep that may impede optimal disengagement for loss of responsiveness, enhanced lighter and fragmented sleep, and contribute to age effects on sleep-dependent brain plasticity

    Circadian Preference Modulates the Neural Substrate of Conflict Processing across the Day

    Get PDF
    Human morning and evening chronotypes differ in their preferred timing for sleep and wakefulness, as well as in optimal daytime periods to cope with cognitive challenges. Recent evidence suggests that these preferences are not a simple by-product of socio-professional timing constraints, but can be driven by inter-individual differences in the expression of circadian and homeostatic sleep-wake promoting signals. Chronotypes thus constitute a unique tool to access the interplay between those processes under normally entrained day-night conditions, and to investigate how they impinge onto higher cognitive control processes. Using functional magnetic resonance imaging (fMRI), we assessed the influence of chronotype and time-of-day on conflict processing-related cerebral activity throughout a normal waking day. Sixteen morning and 15 evening types were recorded at two individually adapted time points (1.5 versus 10.5 hours spent awake) while performing the Stroop paradigm. Results show that interference-related hemodynamic responses are maintained or even increased in evening types from the subjective morning to the subjective evening in a set of brain areas playing a pivotal role in successful inhibitory functioning, whereas they decreased in morning types under the same conditions. Furthermore, during the evening hours, activity in a posterior hypothalamic region putatively involved in sleep-wake regulation correlated in a chronotype-specific manner with slow wave activity at the beginning of the night, an index of accumulated homeostatic sleep pressure. These results shed light into the cerebral mechanisms underlying inter-individual differences of higher-order cognitive state maintenance under normally entrained day-night conditions

    The coming decade of digital brain research: a vision for neuroscience at the intersection of technology and computing

    Get PDF
    In recent years, brain research has indisputably entered a new epoch, driven by substantial methodological advances and digitally enabled data integration and modelling at multiple scales— from molecules to the whole brain. Major advances are emerging at the intersection of neuroscience with technology and computing. This new science of the brain combines high-quality research, data integration across multiple scales, a new culture of multidisciplinary large-scale collaboration and translation into applications. As pioneered in Europe’s Human Brain Project (HBP), a systematic approach will be essential for meeting the coming decade’s pressing medical and technological challenges. The aims of this paper are to: develop a concept for the coming decade of digital brain research, discuss this new concept with the research community at large, to identify points of convergence, and derive therefrom scientific common goals; provide a scientific framework for the current and future development of EBRAINS, a research infrastructure resulting from the HBP’s work; inform and engage stakeholders, funding organisations and research institutions regarding future digital brain research; identify and address the transformational potential of comprehensive brain models for artificial intelligence, including machine learning and deep learning; outline a collaborative approach that integrates reflection, dialogues and societal engagement on ethical and societal opportunities and challenges as part of future neuroscience research

    Response to Comment on “Homeostatic Sleep Pressure and Responses to Sustained Attention in the Suprachiasmatic Area”

    Full text link
    Astafiev et al. question whether the blood oxygen level–dependent (BOLD) response that we reported in the brainstem was located in the locus coeruleus (LC). Using high-resolution T1-turbo spin echo images (T1-TSE) acquired in an independent group of subjects, we show that the reported task-related BOLD response in the brainstem is actually compatible with the anatomical location of the LC
    corecore