32 research outputs found

    The diagnostic value of quantitative bone SPECT/CT in solitary undetermined bone lesions

    No full text
    ObjectiveTo investigate the diagnostic value of the maximum standard uptake value (SUVmax) of quantitative single-photon emission computed tomography/computed tomography (SPECT/CT) in solitary undetermined bone lesions.MethodsIn Part I, retrospective study, 167 untreated patients with extra-skeletal malignant tumors by pathology were consecutively enrolled for staging with Tc-99m methyl-diphosphonate (99mTc-MDP) whole-body bone scan (WBS) and quantitative SPECT/CT, and a total of 396 bone lesions with abnormal radioactivity concentration in 167 patients were included from April 2019 to September 2020. The differences in SUVmax among the benign bone lesions, malignant bone lesions, and normal vertebrae were analyzed. The receiver operating characteristic (ROC) curve and cutoff value of SUVmax were obtained. Part II, prospective study, 49 solitary undetermined bone lesions in SPECT/CT in 49 untreated patients with extra-skeletal malignant tumors were enrolled from October 2020 to August 2022. The diagnostic efficacy of SUVmax in solitary undetermined bone lesions was assessed. The final diagnosis was based on follow-up imaging (CT, MRI, or 2-deoxy-2-[18F]fluoro-D-glucose-positron emission tomography/computed tomography) for at least 12 months.ResultsIn Part I, a total of 156 malignant and 240 benign bone lesions was determined; the SUVmax of malignant lesions (26.49 ± 12.63) was significantly higher than those of benign lesions (13.92 ± 7.16) and normal vertebrae (6.97 ± 1.52) (P = 0.00). The diagnostic efficiency of the SUVmax of quantitative SPECT/CT revealed a sensitivity of 75.00% and a specificity of 81.70% at a cutoff value of 18.07. In Part II, 17 malignant and 32 benign lesions were determined. Using SUVmax ≥18.07 as a diagnostic criterion of malignancy, it has a sensitivity of 82.35%, a specificity of 93.75%, and an accuracy of 89.80%.ConclusionThe SUVmax of quantitative SPECT/CT is valuable in evaluating solitary undetermined bone lesions. Using a cutoff SUVmax value of 18.07, quantitative SPECT/CT demonstrated high sensitivity, specificity, and accuracy in differentiating malignant from benign bone lesions

    Structural organization and functional divergence of high isoelectric point α-amylase genes in bread wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.)

    No full text
    Abstract Background High isoelectric point α-amylase genes (Amy1) play major roles during cereal seed germination, and are associated with unacceptable high residual α-amylase activities in ripe wheat grains. However, in wheat and barley, due to extremely high homology of duplicated copies, and large and complex genome background, the knowledge on this multigene family is limited. Results In the present work, we identified a total of 41 Amy1 genes among 13 investigated grasses. By using genomic resources and experimental validation, the exact copy numbers and chromosomal locations in wheat and barley were determined. Phylogenetic and syntenic analyses revealed tandem gene duplication and chromosomal rearrangement leading to separation of Amy1 into two distinct loci, Amy1θ and Amy1λ. The divergence of Amy1λ from Amy1θ was driven by adaptive selection pressures performed on two amino acids, Arg97 and Asn233 (P > 0.95*). The predicted protein structural alteration caused by substitution of Asp233Asn in the conserved starch binding surface site, and significantly expressional differentiation during seed germination and grain development provided evidence of functional divergence between Amy1θ and Amy1λ genes. We screened out candidate copies (TaAmy1-A1/A2 and TaAmy1-D1) associated with high residual α-amylase activities in ripe grains. Furthermore, we proposed an evolutionary model for expansion dynamics of Amy1 genes. Conclusions Our study provides comprehensive analyses of the Amy1 multigene family, and defines the fixation of two spatially structural Amy1 loci in wheat and barley. Potential functional divergence between them is reflected by their sequence features and expressional patterns, and driven by gene duplication, chromosome rearrangement and natural selections during gene family evolution. Furthermore, the discrimination of differentially effective copies during seed germination and/or grain development will provide guidance to manipulation of α-amylase activity in wheat and barley breeding for better yield and processing properties

    Dehydration induced transcriptomic responses in two Tibetan hulless barley (Hordeum vulgare var. nudum) accessions distinguished by drought tolerance

    No full text
    Abstract Background The harsh environment on the Qinghai-Tibetan Plateau gives Tibetan hulless barley (Hordeum vulgare var. nudum) great ability to resist adversities such as drought, salinity, and low temperature, and makes it a good subject for the analysis of drought tolerance mechanism. To elucidate the specific gene networks and pathways that contribute to its drought tolerance, and for identifying new candidate genes for breeding purposes, we performed a transcriptomic analysis using two accessions of Tibetan hulless barley, namely Z772 (drought-tolerant) and Z013 (drought-sensitive). Results There were more up-regulated genes of Z772 than Z013 under both mild (5439-VS-2604) and severe (7203-VS-3359) dehydration treatments. Under mild dehydration stress, the pathways exclusively enriched in drought-tolerance genotype Z772 included Protein processing in endoplasmic reticulum, tricarboxylic acid (TCA) cycle, Wax biosynthesis, and Spliceosome. Under severe dehydration stress, the pathways that were mainly enriched in Z772 included Carbon fixation in photosynthetic organisms, Pyruvate metabolism, Porphyrin and chlorophyll metabolism. The main differentially expressed genes (DEGs) in response to dehydration stress and genes whose expression was different between tolerant and sensitive genotypes were presented in this study, respectively. The candidate genes for drought tolerance were selected based on their expression patterns. Conclusions The RNA-Seq data obtained in this study provided an initial overview on global gene expression patterns and networks that related to dehydration shock in Tibetan hulless barley. Furthermore, these data provided pathways and a targeted set of candidate genes that might be essential for deep analyzing the molecular mechanisms of plant tolerance to drought stress

    miR-33a-3p regulates METTL3-mediated AREG stability and alters EMT to inhibit pancreatic cancer invasion and metastasis

    No full text
    Abstract Recent studies have shown that amphoteric regulatory protein (AREG), a member of the epidermal growth factor (EGF) family, is expressed in many cancers and is an independent prognostic indicator for patients with pancreatic cancer, but whether AREG is regulated at the epigenetic level to promote the development of pancreatic cancer (PC) has not been elucidated. Our results support the notion that AREG is overexpressed in pancreatic cancer tissues and cell lines. Functionally, the deletion of AREG impedes pancreatic cancer (PC) cell proliferation, migration, and invasion. In addition, we identified and validated that methyltransferase-like 3 (METTL3) induced the m6A modification on AREG and facilitated the stability of AREG mRNA after sequencing. Additionally, we obtained experimental evidence that miR-33a-3p targets and inhibits METTL3 from taking action, as predicted by using the miRDB and RNAinter. Remediation experiments showed that miR-33a-3p inhibits PC progression through METTL3. In summary, this research reveals that miR-33a-3p inhibits m6A-induced stabilization of AREG by targeting METTL3, which plays a key role in the aggressive progression of PC. AREG could be a potential target for PC treatment

    Clinical feasibility study of early 30-minute dynamic FDG-PET scanning protocol for patients with lung lesions

    No full text
    Abstract Purpose This study aimed to evaluate the clinical feasibility of early 30-minute dynamic 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) positron emission tomography (PET) scanning protocol for patients with lung lesions in comparison to the standard 65-minute dynamic FDG-PET scanning as a reference. Methods Dynamic 18F-FDG PET images of 146 patients with 181 lung lesions (including 146 lesions confirmed by histology) were analyzed in this prospective study. Dynamic images were reconstructed into 28 frames with a specific temporal division protocol for the scan data acquired 65 min post-injection. Ki images and quantitative parameters Ki based on two different acquisition durations [the first 30 min (Ki-30 min) and 65 min (Ki-65 min)] were obtained by applying the irreversible two-tissue compartment model using in-house Matlab software. The two acquisition durations were compared for Ki image quality (including visual score analysis and number of lesions detected) and Ki value (including accuracy of Ki, the value of differential diagnosis of lung lesions and prediction of PD-L1 status) by Wilcoxon’s rank sum test, Spearman’s rank correlation analysis, receiver operating characteristic (ROC) curve, and the DeLong test. The significant testing level (alpha) was set to 0.05. Results The quality of the Ki-30 min images was not significantly different from the Ki-65 min images based on visual score analysis (P > 0.05). In terms of Ki value, among 181 lesions, Ki-65 min was statistically higher than Ki-30 min (0.027 ± 0.017 ml/g/min vs. 0.026 ± 0.018 ml/g/min, P  0.05), while the diagnostic accuracies of Ki-65 min and Ki-30 min were both significantly higher than that of SUVmax (P  0.05), according to the results of ROC analysis and Delong test. Conclusions This study indicates that an early 30-minute dynamic FDG-PET acquisition appears to be sufficient to provide quantitative images with good-quality and accurate Ki values for the assessment of lung lesions and prediction of PD-L1 expression. Protocols with a shortened early 30-minute acquisition time may be considered for patients who have difficulty with prolonged acquisitions to improve the efficiency of clinical acquisitions

    La percepción del aspecto imperfectivo del Pretérito Imperfecto : Estudio de las dificultades en alumnos suecos de español como lengua extranjera en nivel A2

    Get PDF
    Uno de los aspectos de la gramática española que presenta mayor dificultad para el aprendizaje y uso es la diferenciación entre los distintos tiempos verbales. En nuestro estudio nos hemos centrado en la percepción que alumnos suecos de E/LE en nivel A2 tienen del aspecto imperfectivo del pretérito imperfecto. Para lograr nuestro objetivo se seleccionaron 20 informantes cuya lengua materna es el sueco y cuyo único contacto con el español se da en la escuela, y se les entregaron cinco ejercicios. Los resultados a los que se ha llegado son que los alumnos tienen más dificultades en la comprensión del carácter aspectual del pretérito imperfecto que del pretérito indefinido. Por otra parte, dentro de los distintos usos del imperfecto, el que más errores produce es el uso descriptivo de la acción. Por último, si nos centramos en los tipos de verbos conjugados en el tiempo verbal relativo a nuestro estudio, los que resultan más difíciles de entender son los verbos de estado
    corecore