7 research outputs found
Assessment of MODIS, MERIS, GEOV1 FPAR Products over Northern China with Ground Measured Data and by Analyzing Residential Effect in Mixed Pixel
Fraction of Photosynthetically Active Radiation (FPAR) is a critical parameter in land surface energy balance and climate modeling. Several global FPAR products are available, but these still require considerable assessment and validation due to low spatial resolution. Three major FPAR products that have covered China and provided continuous time series data—MODIS, MERIS and GEOV1—were assessed from 2006–2010. Based on the ground measurement data, the accuracies of these three FPAR products were directly validated for maize and winter wheat over northern China. This investigation also assessed the consistencies among the three FPAR products, and analyzed the residential area in mixed pixels effect on the FPAR products accuracy, at each of the main growth stages of maize and winter wheat. The GEOV1 FPAR product was found to be the most accurate with regression R2 values of 0.818 and 0.655 for ground measured maize and winter wheat FPAR. The maize FPAR data were generally more accurate than the winter wheat FPAR data. The MODIS, MERIS and GEOV1 products all indicated that FPAR variations among the growth stages differed from year to year. The scattered residential areas in mixed pixels were found to significantly affect the FPAR data uncertainties, and these were also analyzed in detail. The effect of residential area percentage in mixed pixels on FPAR values differed for different crops, and this was not necessarily in accordance with the FPAR product accuracy. For the mixed pixels, a quadratic polynomial was able to fit the residential area and FPAR data reasonably well with R2 values higher than 0.9 for most relationships. Quadratic polynomial fitting may provide a simple and convenient method to assess and reduce the residential area effect on FPAR in the mixed pixels
Combined Phosphatase and Tensin Homolog (PTEN) Loss and Fatty Acid Synthase (FAS) Overexpression Worsens the Prognosis of Chinese Patients with Hepatocellular Carcinoma
We aimed to investigate the expression pattern of phosphatase and tensin homolog (PTEN), to evaluate the relationship between PTEN expression and clinicopathological characteristics, including fatty acid synthase (FAS) expression, and to determine the correlations of PTEN and FAS expression with survival in Chinese patients with hepatocellular carcinoma (HCC). The expression patterns of PTEN and FAS were determined using tissue microarrays and immunohistochemistry. The expression of PTEN was compared with the clinicopathological characteristics of HCC, including FAS expression. Receiver operator characteristic curves were used to calculate the clinical sensitivity and specificity of PTEN expression. Kaplan-Meier survival curves were constructed to evaluate the correlations of PTEN loss and FAS overexpression with overall survival. We found that the loss of PTEN expression occurred predominantly in the cytoplasm, while FAS was mainly localized to the cytoplasm. Cytoplasmic and total PTEN expression levels were significantly decreased in HCC compared with adjacent non-neoplastic tissue (both, <em>p</em> < 0.0001). Decreased cytoplasmic and total PTEN expression showed significant clinical sensitivity and specificity for HCC (both, <em>p</em> < 0.0001). Downregulation of PTEN in HCC relative to non-neoplastic tissue was significantly correlated with histological grade (<em>p</em> = 0.043 for histological grades I–II <em>versus</em> grade III). Loss of total PTEN was significantly correlated with FAS overexpression (<em>p</em> = 0.014). Loss of PTEN was also associated with poor prognosis of patients with poorly differentiated HCC (<em>p</em> = 0.049). Moreover, loss of PTEN combined with FAS overexpression was associated with significantly worse prognosis compared with other HCC cases (<em>p</em> = 0.011). Our data indicate that PTEN may serve as a potential diagnostic and prognostic marker of HCC. Upregulating PTEN expression and inhibiting FAS expression may offer a novel therapeutic approach for HCC