11 research outputs found

    The alkaline pectate lyase PEL168 of Bacillus subtilis heterologously expressed in Pichia pastoris is more stable and efficient for degumming ramie fiber

    Get PDF
    BACKGROUND: The conventional degumming process of ramie with alkaline treatment at high temperature causes severe environmental pollution. Pectate lyases can be used to remove pectin from ramie in a degumming process with reduced environmental pollution and energy consumption. Pectate lyase PEL168 from Bacillus subtilis has been previously characterized and the protein structure was resolved. However, Bacillus is not a suitable host for pectate lyases during the degumming process since most Bacillus produce cellulases endogenously with a detrimental effect to the fiber. Pichia pastoris, which does not express endogenous cellulases and has high secretion capability, will be an ideal host for the expression. No previous work was reported concerning the heterologous expression of pectate lyase PEL168 in P. pastoris with an aim for industrial application in ramie bio-degumming. RESULTS: The gene pel168 was expressed in P. pastoris in this study. The recombinant protein PEL168 in P. pastoris (PEL168P) showed two bands of 48.6 kDa and 51.4 kDa on SDS-PAGE whereas the enzyme expressed in E. coli (PEL168E) was the same as predicted with a band of 46 kDa. Deglycosylation digestion suggested that PEL168P was glycosylated. The optimum reaction temperature of the two PEL168s was 50°C, and the optimum pH 9.5. After preincubation at 60°C for 20 min, PEL168E completely lost its activity, whereas PEL168P kept 26% of the residual activity. PEL168P had a specific activity of 1320 U/mg with a K(m) of 0.09 mg/ml and a V(max) of 18.13 μmol/min. K(+), Li(+), Ni(2+) and Sr(2+) showed little or no inhibitory effect on PEL168P activity, and Ca(2+) enhanced enzyme activity by 38%. PEL168P can remove the pectin from ramie effectively in a degumming process. A 1.5 fold increase of PEL168 enzyme expression in P. pastoris was achieved by further codon optimization. CONCLUSIONS: Pectate lyase PEL168 with an available protein structure can be heterologously expressed in P. pastoris. The characterized recombinant PEL168P can be used to remove pectin from ramie efficiently and the expression level of PEL168 in P. pastoris was increased markedly by codon optimization. Therefore, PEL168 is an ideal candidate for further optimization and engineering for bio-degumming

    Structural Analysis of Alkaline β-Mannanase from Alkaliphilic Bacillus sp. N16-5: Implications for Adaptation to Alkaline Conditions

    Get PDF
    Significant progress has been made in isolating novel alkaline β-mannanases, however, there is a paucity of information concerning the structural basis for alkaline tolerance displayed by these β-mannanases. We report the catalytic domain structure of an industrially important β-mannanase from the alkaliphilic Bacillus sp. N16-5 (BSP165 MAN) at a resolution of 1.6 Å. This enzyme, classified into subfamily 8 in glycosyl hydrolase family 5 (GH5), has a pH optimum of enzymatic activity at pH 9.5 and folds into a classic (β/α)8-barrel. In order to gain insight into molecular features for alkaline adaptation, we compared BSP165 MAN with previously reported GH5 β-mannanases. It was revealed that BSP165 MAN and other subfamily 8 β-mannanases have significantly increased hydrophobic and Arg residues content and decreased polar residues, comparing to β-mannanases of subfamily 7 or 10 in GH5 which display optimum activities at lower pH. Further, extensive structural comparisons show alkaline β-mannanases possess a set of distinctive features. Position and length of some helices, strands and loops of the TIM barrel structures are changed, which contributes, to a certain degree, to the distinctly different shaped (β/α)8-barrels, thus affecting the catalytic environment of these enzymes. The number of negatively charged residues is increased on the molecular surface, and fewer polar residues are exposed to the solvent. Two amino acid substitutions in the vicinity of the acid/base catalyst were proposed to be possibly responsible for the variation in pH optimum of these homologous enzymes in subfamily 8 of GH5, identified by sequence homology analysis and pKa calculations of the active site residues. Mutational analysis has proved that Gln91 and Glu226 are important for BSP165 MAN to function at high pH. These findings are proposed to be possible factors implicated in the alkaline adaptation of GH5 β-mannanases and will help to further understanding of alkaline adaptation mechanism

    Y (2012) Effects of salts on activity of halophilic cellulase with glucomannanase activity isolated from alkaliphilic and halophilic Bacillus sp. BG-CS10

    No full text
    Abstract Alkaliphilic and halophilic Bacillus sp. BG-CS10 was isolated from Zabuye Salt Lake, Tibet. The gene celB, encoding a halophilic cellulase was identified from the genomic library of BG-CS10. CelB belongs to the cellulase superfamily and DUF291 superfamily, with an unknown function domain and less than 58% identity to other cellulases in GenBank. The purified recombinant protein (molecular weight: 62 kDa) can hydrolyze soluble cellulose substrates containing beta-1,4-linkages, such as carboxylmethyl cellulose and konjac glucomannan, but has no exoglucanase and b-glucosidase activities. Thus, CelB is a cellulase with an endo mode of action and glucomannanase activity. Interestingly, the enzyme activity was increased approximately tenfold with 2.5 M NaCl or 3 M KCl. Furthermore, the optimal temperatures were 55°C with 2.5 M NaCl and 35°C without NaCl, respectively. This indicates that NaCl can improve enzyme thermostability. The K m and k cat values of CelB for CMC with 2.5 M NaCl were 3.18 mg mL -1 and 26 s -1 , while the K m and k cat values of CelB without NaCl were 6.6 mg mL -1 and 2.1 s -1 . Thus, this thermo-stable, salt and pH-tolerant cellulase is a promising candidate for industrial applications, and provides a new model to study salt effects on the structure of protein

    Clinical diagnosis of genetic disorders at both single-nucleotide and chromosomal levels based on BGISEQ-500 platform

    No full text
    Abstract Most variations in the human genome refer to single-nucleotide variation (SNV), small fragment insertions and deletions, and genomic copy number variation (CNV). Many human diseases including genetic disorders are associated with variations in the genome. These disorders are often difficult to be diagnosed because of their complex clinical conditions, therefore, an effective detection method is needed to facilitate clinical diagnosis and prevent birth defects. With the development of high-throughput sequencing technology, the method of targeted sequence capture chip has been extensively used owing to its high throughput, high accuracy, fast speed, and low cost. In this study, we designed a chip that potentially captured the coding region of 3043 genes associated with 4013 monogenic diseases, with an addition of 148 chromosomal abnormalities that can be identified by targeting specific regions. To assess the efficiency, a strategy of combining the BGISEQ500 sequencing platform with the designed chip was utilized to screen variants in 63 patients. Eventually, 67 disease-associated variants were found, 31 of which were novel. The results of the evaluation test also show that this combined strategy complies with the requirements of clinical testing and has proper clinical application value
    corecore