1,159 research outputs found

    Task-Oriented Communication for Multi-Device Cooperative Edge Inference

    Full text link
    This paper investigates task-oriented communication for multi-device cooperative edge inference, where a group of distributed low-end edge devices transmit the extracted features of local samples to a powerful edge server for inference. While cooperative edge inference can overcome the limited sensing capability of a single device, it substantially increases the communication overhead and may incur excessive latency. To enable low-latency cooperative inference, we propose a learning-based communication scheme that optimizes local feature extraction and distributed feature encoding in a task-oriented manner, i.e., to remove data redundancy and transmit information that is essential for the downstream inference task rather than reconstructing the data samples at the edge server. Specifically, we leverage an information bottleneck (IB) principle to extract the task-relevant feature at each edge device and adopt a distributed information bottleneck (DIB) framework to formalize a single-letter characterization of the optimal rate-relevance tradeoff for distributed feature encoding. To admit flexible control of the communication overhead, we extend the DIB framework to a distributed deterministic information bottleneck (DDIB) objective that explicitly incorporates the representational costs of the encoded features. As the IB-based objectives are computationally prohibitive for high-dimensional data, we adopt variational approximations to make the optimization problems tractable. To compensate the potential performance loss due to the variational approximations, we also develop a selective retransmission (SR) mechanism to identify the redundancy in the encoded features of multiple edge devices to attain additional communication overhead reduction. Extensive experiments evidence that the proposed task-oriented communication scheme achieves a better rate-relevance tradeoff than baseline methods.Comment: This paper was accepted to IEEE Transactions on Wireless Communicatio

    Enhanced superconductivity at the interface of W/Sr2_{2}RuO4_{4} point contact

    Full text link
    Differential resistance measurements are conducted for point contacts (PCs) between tungsten tip approaching along the cc axis direction and the abab plane of Sr2_{2}RuO4_{4} single crystal. Three key features are found. Firstly, within 0.2 mV there is a dome like conductance enhancement due to Andreev reflection at the normal-superconducting interface. By pushing the W tip further, the conductance enhancement increases from 3\% to more than 20\%, much larger than that was previously reported, probably due to the pressure exerted by the tip. Secondly, there are also superconducting like features at bias higher than 0.2 mV which persists up to 6.2 K, resembling the enhanced superconductivity under uniaxial pressure for bulk Sr2_{2}RuO4_{4} crystals but more pronounced here. Third, the logarithmic background can be fitted with the Altshuler-Aronov theory of tunneling into quasi two dimensional electron system, consistent with the highly anisotropic electronic system in Sr2_{2}RuO4_{4}.Comment: prb style, 9 pages, 8 fig

    Branchy-GNN: a Device-Edge Co-Inference Framework for Efficient Point Cloud Processing

    Full text link
    The recent advancements of three-dimensional (3D) data acquisition devices have spurred a new breed of applications that rely on point cloud data processing. However, processing a large volume of point cloud data brings a significant workload on resource-constrained mobile devices, prohibiting from unleashing their full potentials. Built upon the emerging paradigm of device-edge co-inference, where an edge device extracts and transmits the intermediate feature to an edge server for further processing, we propose Branchy-GNN for efficient graph neural network (GNN) based point cloud processing by leveraging edge computing platforms. In order to reduce the on-device computational cost, the Branchy-GNN adds branch networks for early exiting. Besides, it employs learning-based joint source-channel coding (JSCC) for the intermediate feature compression to reduce the communication overhead. Our experimental results demonstrate that the proposed Branchy-GNN secures a significant latency reduction compared with several benchmark methods

    Hierarchical Text Classification with Reinforced Label Assignment

    Full text link
    While existing hierarchical text classification (HTC) methods attempt to capture label hierarchies for model training, they either make local decisions regarding each label or completely ignore the hierarchy information during inference. To solve the mismatch between training and inference as well as modeling label dependencies in a more principled way, we formulate HTC as a Markov decision process and propose to learn a Label Assignment Policy via deep reinforcement learning to determine where to place an object and when to stop the assignment process. The proposed method, HiLAP, explores the hierarchy during both training and inference time in a consistent manner and makes inter-dependent decisions. As a general framework, HiLAP can incorporate different neural encoders as base models for end-to-end training. Experiments on five public datasets and four base models show that HiLAP yields an average improvement of 33.4% in Macro-F1 over flat classifiers and outperforms state-of-the-art HTC methods by a large margin. Data and code can be found at https://github.com/morningmoni/HiLAP.Comment: EMNLP 201

    End-to-End Reinforcement Learning for Automatic Taxonomy Induction

    Get PDF
    We present a novel end-to-end reinforcement learning approach to automatic taxonomy induction from a set of terms. While prior methods treat the problem as a two-phase task (i.e., detecting hypernymy pairs followed by organizing these pairs into a tree-structured hierarchy), we argue that such two-phase methods may suffer from error propagation, and cannot effectively optimize metrics that capture the holistic structure of a taxonomy. In our approach, the representations of term pairs are learned using multiple sources of information and used to determine \textit{which} term to select and \textit{where} to place it on the taxonomy via a policy network. All components are trained in an end-to-end manner with cumulative rewards, measured by a holistic tree metric over the training taxonomies. Experiments on two public datasets of different domains show that our approach outperforms prior state-of-the-art taxonomy induction methods up to 19.6\% on ancestor F1.Comment: 11 Pages. ACL 2018 Camera Read

    Stochastic Coded Federated Learning: Theoretical Analysis and Incentive Mechanism Design

    Full text link
    Federated learning (FL) has achieved great success as a privacy-preserving distributed training paradigm, where many edge devices collaboratively train a machine learning model by sharing the model updates instead of the raw data with a server. However, the heterogeneous computational and communication resources of edge devices give rise to stragglers that significantly decelerate the training process. To mitigate this issue, we propose a novel FL framework named stochastic coded federated learning (SCFL) that leverages coded computing techniques. In SCFL, before the training process starts, each edge device uploads a privacy-preserving coded dataset to the server, which is generated by adding Gaussian noise to the projected local dataset. During training, the server computes gradients on the global coded dataset to compensate for the missing model updates of the straggling devices. We design a gradient aggregation scheme to ensure that the aggregated model update is an unbiased estimate of the desired global update. Moreover, this aggregation scheme enables periodical model averaging to improve the training efficiency. We characterize the tradeoff between the convergence performance and privacy guarantee of SCFL. In particular, a more noisy coded dataset provides stronger privacy protection for edge devices but results in learning performance degradation. We further develop a contract-based incentive mechanism to coordinate such a conflict. The simulation results show that SCFL learns a better model within the given time and achieves a better privacy-performance tradeoff than the baseline methods. In addition, the proposed incentive mechanism grants better training performance than the conventional Stackelberg game approach

    More comprehensive facial inversion for more effective expression recognition

    Full text link
    Facial expression recognition (FER) plays a significant role in the ubiquitous application of computer vision. We revisit this problem with a new perspective on whether it can acquire useful representations that improve FER performance in the image generation process, and propose a novel generative method based on the image inversion mechanism for the FER task, termed Inversion FER (IFER). Particularly, we devise a novel Adversarial Style Inversion Transformer (ASIT) towards IFER to comprehensively extract features of generated facial images. In addition, ASIT is equipped with an image inversion discriminator that measures the cosine similarity of semantic features between source and generated images, constrained by a distribution alignment loss. Finally, we introduce a feature modulation module to fuse the structural code and latent codes from ASIT for the subsequent FER work. We extensively evaluate ASIT on facial datasets such as FFHQ and CelebA-HQ, showing that our approach achieves state-of-the-art facial inversion performance. IFER also achieves competitive results in facial expression recognition datasets such as RAF-DB, SFEW and AffectNet. The code and models are available at https://github.com/Talented-Q/IFER-master
    corecore