84 research outputs found

    Single-nucleotide polymorphisms and association analysis of drought-resistance gene TaSnRK2.8 in common wheat

    Get PDF
    AbstractTaSnRK2.8, an SnRK2 (sucrose non-fermenting1-related protein kinase 2) member of wheat, confers enhanced multi-stress tolerances in carbohydrate metabolism. In the study, two types of genomic sequences of TaSnRK2.8 were detected in common wheat. Sequencing analysis showed that there was a variation-enriched region, designated TaSnRK2.8-A-C, covering the eighth intron, the ninth exon and the 3′-flanking region of TaSnRK2.8-A, and no divergence occurred in TaSnRK2.8-B. Single nucleotide polymorphisms in the TaSnRK2.8-A-C region were investigated in 165 wheat accessions. Three of 751 sequenced nucleotide sites were polymorphic. Nucleotide diversity (π) in the region was 0.00068. Sliding-window analysis demonstrated that the nucleotide diversity was highest in the 3′-flanking sequence. As predicted, the highly frequent SNP was significantly associated with seedling biomass under normal conditions, plant height, flag leaf width and water-soluble carbohydrate content under drought conditions. Analysis of variance of correlated traits between accessions with the A and G genotypes indicated that the A variant was the more favorable allele associated with significantly increased seedling biomass and water-soluble carbohydrates. Based on the SNP, we developed a functional marker of TaSnRK2.8-A-C, that could be utilized in wheat breeding programs aimed at improving seedling biomass and water-soluble carbohydrates, and consequently to enhance stress resistance in wheat

    Modulating the Verwey Transition of Epitaxial Magnetite Thin Films by Ionic Gating

    Get PDF
    Understanding the Verwey transition in magnetite (Fe3O4), a strongly correlated magnetic oxide, is a one-century-old topic that recaptures great attention because of the recent spectroscopy studies revealing its orbital details. Here, the modulation of the Verwey transition by tuning the orbital configurations with ionic gating is reported. In epitaxial magnetite thin films, the insulating Verwey state can be tuned continuously to be metallic showing that the low-temperature trimeron states can be controllably metalized by both the gate-induced oxygen vacancies and proton doping. The ionic gating can also reverse the sign of the anomalous Hall coefficient, indicating that the metallization is associated with the presence of a new type of carrier with competing spin. The variable spin orientation associated with the sign reversal is originated from the structural distortions driven by the gate-induced oxygen vacancies

    The DNA Methylome and Transcriptome of Different Brain Regions in Schizophrenia and Bipolar Disorder

    Get PDF
    Extensive changes in DNA methylation have been observed in schizophrenia (SC) and bipolar disorder (BP), and may contribute to the pathogenesis of these disorders. Here, we performed genome-scale DNA methylation profiling using methylated DNA immunoprecipitation followed by sequencing (MeDIP-seq) on two brain regions (including frontal cortex and anterior cingulate) in 5 SC, 7 BP and 6 normal subjects. Comparing with normal controls, we identified substantial differentially methylated regions (DMRs) in these two brain regions of SC and BP. To our surprise, different brain regions show completely distinct distributions of DMRs across the genomes. In frontal cortex of both SC and BP subjects, we observed widespread hypomethylation as compared to normal controls, preferentially targeting the terminal ends of the chromosomes. In contrast, in anterior cingulate, both SC and BP subjects displayed extensive gain of methylation. Notably, in these two brain regions of SC and BP, only a few DMRs overlapped with promoters, whereas a greater proportion occurs in introns and intergenic regions. Functional enrichment analysis indicated that important psychiatric disorder-related biological processes such as neuron development, differentiation and projection may be altered by epigenetic changes located in the intronic regions. Transcriptome analysis revealed consistent dysfunctional processes with those determined by DMRs. Furthermore, DMRs in the same brain regions from SC and BP could successfully distinguish BP and/or SC from normal controls while differentially expressed genes could not. Overall, our results support a major role for brain-region-dependent aberrant DNA methylation in the pathogenesis of these two disorders

    Genomic insights into local adaptation and future climate-induced vulnerability of a keystone forest tree in East Asia

    Get PDF
    Assessment of population vulnerability and adaptive capacity under climate change is crucial for informing conservation strategies. Sang et al. assemble a reference genome for Populus koreana and combine population genomics and modelling to predict spatiotemporal responses to climate change.Rapid global climate change is posing a substantial threat to biodiversity. The assessment of population vulnerability and adaptive capacity under climate change is crucial for informing conservation and mitigation strategies. Here we generate a chromosome-scale genome assembly and re-sequence genomes of 230 individuals collected from 24 populations for Populus koreana, a pioneer and keystone tree species in temperate forests of East Asia. We integrate population genomics and environmental variables to reveal a set of climate-associated single-nucleotide polymorphisms, insertion/deletions and structural variations, especially numerous adaptive non-coding variants distributed across the genome. We incorporate these variants into an environmental modeling scheme to predict a highly spatiotemporal shift of this species in response to future climate change. We further identify the most vulnerable populations that need conservation priority and many candidate genes and variants that may be useful for forest tree breeding with special aims. Our findings highlight the importance of integrating genomic and environmental data to predict adaptive capacity of a key forest to rapid climate change in the future

    TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis

    Get PDF
    Environmental stresses such as drought, salinity, and cold are major factors that significantly limit agricultural productivity. NAC transcription factors play essential roles in response to various abiotic stresses. However, the paucity of wheat NAC members functionally characterized to date does not match the importance of this plant as a world staple crop. Here, the function of TaNAC2 was characterized in Arabidopsis thaliana. A fragment of TaNAC2 was obtained from suppression subtractive cDNA libraries of wheat treated with polyethylene glycol, and its full-length cDNA was obtained by searching a full-length wheat cDNA library. Gene expression profiles indicated that TaNAC2 was involved in response to drought, salt, cold, and abscisic acid treatment. To test its function, transgenic Arabidopsis lines overexpressing TaNAC2–GFP controlled by the cauliflower mosaic virus 35S promoter were generated. Overexpression of TaNAC2 resulted in enhanced tolerances to drought, salt, and freezing stresses in Arabidopsis, which were simultaneously demonstrated by enhanced expression of abiotic stress-response genes and several physiological indices. Therefore, TaNAC2 has potential for utilization in transgenic breeding to improve abiotic stress tolerances in crops

    TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis

    Get PDF
    Osmotic stresses such as drought, salinity, and cold are major environmental factors that limit agricultural productivity worldwide. Protein phosphorylation/dephosphorylation are major signalling events induced by osmotic stress in higher plants. Sucrose non-fermenting 1-related protein kinase2 family members play essential roles in response to hyperosmotic stresses in Arabidopsis, rice, and maize. In this study, the function of TaSnRK2.4 in drought, salt, and freezing stresses in Arabidopsis was characterized. A translational fusion protein of TaSnRK2.4 with green fluorescent protein showed subcellular localization in the cell membrane, cytoplasm, and nucleus. To examine the role of TaSnRK2.4 under various environmental stresses, transgenic Arabidopsis plants overexpressing wheat TaSnRK2.4 under control of the cauliflower mosaic virus 35S promoter were generated. Overexpression of TaSnRK2.4 resulted in delayed seedling establishment, longer primary roots, and higher yield under normal growing conditions. Transgenic Arabidopsis overexpressing TaSnRK2.4 had enhanced tolerance to drought, salt, and freezing stresses, which were simultaneously supported by physiological results, including decreased rate of water loss, enhanced higher relative water content, strengthened cell membrane stability, improved photosynthesis potential, and significantly increased osmotic potential. The results show that TaSnRK2.4 is involved in the regulation of enhanced osmotic potential, growth, and development under both normal and stress conditions, and imply that TaSnRK2.4 is a multifunctional regulatory factor in Arabidopsis. Since the overexpression of TaSnRK2.4 can significantly strengthen tolerance to drought, salt, and freezing stresses and does not retard the growth of transgenic Arabidopsis plants under well-watered conditions, TaSnRK2.4 could be utilized in transgenic breeding to improve abiotic stresses in crops

    miR-155-5p is Negatively Associated with Acute Pancreatitis and Inversely Regulates Pancreatic Acinar Cell Progression by Targeting Rela and Traf3

    Get PDF
    Background/Aims: Acute pancreatitis contributes to high mortality in pancreatitis patients, and miRNAs play a vital role in the development of acute pancreatitis (AP), however, its precise biological role remains largely elusive. Methods: To clarify the potential mechanisms of miRNAs in AP, we built mouse models of mild acute pancreatitis (MAP) and moderate/ severe acute pancreatitis (SAP). MiRNA microarray analysis and Real-time quantitative PCR (qRT-PCR) were used to analyze the expression of miRNA in MAP/SAP. TargetScan software, dual-luciferase gene reporter assays and Western blotting were used to assess the target genes of miR-155-5p in AP. Results: miR-155-5p was significantly decreased in MAP/SAP mice compared to controls. In pancreatic acinar AR42J cells transfected with miR-155-5p mimic, the expression of Rela and Traf3 notably decreased in both the caerulein- and TLC-S-induced groups compared with the negative control (NC); however, the expression of Rela and Traf3 notably increased after transfection with miR-155-5p inhibitor. Combined analysis using the TargetScan software and dual-luciferase gene reporter assays indicated that Rela and Traf3 were both targeted by miR-155-5p. Meanwhile, the expression of Ptgs2 also decreased after transfection of the AR42J cells with miR-155-5p mimic. The opposite results were found when miR-155-5p inhibitor was transfected into the AR42J cells. In addition, we treated caerulein- and TLC-S-induced AR42J cells with the Rela inhibitor helenalin and found that the expression of Rela, Traf3 and Ptgs2 decreased compared with the NC, while the expression of miR-155-5p did not show any significant difference. Furthermore, we found that miR-155-5p was significantly down-regulated in pancreatitis patients. Conclusion: miR-155-5p inversely regulated AP development through the Rela/Traf3/Ptgs2 signaling pathway

    Overexpression of a Common Wheat Gene TaSnRK2.8 Enhances Tolerance to Drought, Salt and Low Temperature in Arabidopsis

    Get PDF
    Drought, salinity and low temperatures are major factors limiting crop productivity and quality. Sucrose non-fermenting1-related protein kinase 2 (SnRK2) plays a key role in abiotic stress signaling in plants. In this study, TaSnRK2.8, a SnRK2 member in wheat, was cloned and its functions under multi-stress conditions were characterized. Subcellular localization showed the presence of TaSnRK2.8 in the cell membrane, cytoplasm and nucleus. Expression pattern analyses in wheat revealed that TaSnRK2.8 was involved in response to PEG, NaCl and cold stresses, and possibly participates in ABA-dependent signal transduction pathways. To investigate its role under various environmental stresses, TaSnRK2.8 was transferred to Arabidopsis under control of the CaMV-35S promoter. Overexpression of TaSnRK2.8 resulted in enhanced tolerance to drought, salt and cold stresses, further confirmed by longer primary roots and various physiological characteristics, including higher relative water content, strengthened cell membrane stability, significantly lower osmotic potential, more chlorophyll content, and enhanced PSII activity. Meanwhile, TaSnRK2.8 plants had significantly lower total soluble sugar levels under normal growing conditions, suggesting that TaSnRK2.8 might be involved in carbohydrate metabolism. Moreover, the transcript levels of ABA biosynthesis (ABA1, ABA2), ABA signaling (ABI3, ABI4, ABI5), stress-responsive genes, including two ABA-dependent genes (RD20A, RD29B) and three ABA-independent genes (CBF1, CBF2, CBF3), were generally higher in TaSnRK2.8 plants than in WT/GFP controls under normal/stress conditions. Our results suggest that TaSnRK2.8 may act as a regulatory factor involved in a multiple stress response pathways
    corecore