1,078 research outputs found

    Graphene oxide functionalized long period fiber grating for highly sensitive hemoglobin detection

    Get PDF
    We present graphene oxide (GO) nanosheets functionalized long period grating (LPG) for ultrasensitive hemoglobin sensing. The sensing mechanism relies on the measurement of LPG resonant intensity change induced by the adsorption of hemoglobin molecules onto GO, where GO as a bio-interface linkage provides the significant light-matter interaction between evanescent field and target molecules. The deposition technique based on chemical-bonding associated with physical-adsorption was developed to immobilize GO nanosheets on cylindrical fiber device. The surface morphology was characterized by scanning electron microscope, atomic force microscopy, and Raman spectroscopy. With relatively thicker GO coating, the refractive index (RI) sensitivity of GO-LPG was extremely enhanced and achieved −76.5 dB/RIU, −234.2 dB/RIU and +1580.5 dB/RIU for RI region of 1.33-1.38, 1.40-1.44 and 1.45-1.46, respectively. The GO-LPG was subsequently implemented as an optical biosensor to detect human hemoglobin giving a sensitivity of 1.9 dB/(mg/mL) and a detectable concentration of 0.05 mg/mL, which was far below the hemoglobin threshold value for anemia defined by World Health Organization. The proposed GO-LPG architecture can be further developed as an optical biosensing platform for anemia diagnostics and biomedical applications

    Search for exoplanets in M31 with pixel-lensing and the PA-99-N2 event revisited

    Full text link
    Several exoplanets have been detected towards the Galactic bulge with the microlensing technique. We show that exoplanets in M31 may also be detected with the pixel-lensing method, if telescopes making high cadence observations of an ongoing microlensing event are used. Using a Monte Carlo approach we find that the mean mass for detectable planetary systems is about 2MJ2 M_{\rm {J}}. However, even small mass exoplanets (MP<20M⊕M_{\rm P} < 20 M_{\oplus}) can cause significant deviations, which are observable with large telescopes. We reanalysed the POINT-AGAPE microlensing event PA-99-N2. First, we test the robustness of the binary lens conclusion for this light curve. Second, we show that for such long duration and bright microlensing events, the efficiency for finding planetary-like deviations is strongly enhanced with respect to that evaluated for all planetary detectable events.Comment: 14 pages, 8 figures. Paper presented at the "II Italian-Pakistani Workshop on Relativistic Astrophysics, Pescara, July 8-10, 2009. To be published in a special issue of General Relativity and Gravitation (eds. F. De Paolis, G.F.R. Ellis, A. Qadir and R. Ruffini

    Crystal structure of solid Oxygen at high pressure and low temperature

    Full text link
    Results of X-ray diffraction experiments on solid oxygen at low temperature and at pressures up to 10 GPa are presented.A careful sample preparation and annealing around 240 K allowed to obtain very good diffraction patterns in the orthorhombic delta-phase. This phase is stable at low temperature, in contrast to some recent data [Y. Akahama et al., Phys. Rev. B64, 054105 (2001)], and transforms with decreasing pressure into a monoclinic phase, which is identified as the low pressure alpha-phase. The discontinuous change of the lattice parameters, and the observed metastability of the alpha-phase increasing pressure suggest that the transition is of the first order.Comment: 4 pages with three figure

    Influence of Carbon Concentration on the Superconductivity in MgCxNi3

    Full text link
    The influence of carbon concentration on the superconductivity (SC) in MgCx_{x}Ni3_3 has been investigated by measuring the low temperature specific heat combined with first principles electronic structure calculation. It is found that the specific heat coefficient γn=Cen/T\gamma_n=C_{en}/T of the superconducting sample (x≈1x\approx1) in normal state is twice that of the non-superconducting one (x≈0.85x\approx 0.85). The comparison of measured γn\gamma_n and the calculated electronic density of states (DOS) shows that the effective mass renormalization changes remarkably as the carbon concentration changes. The large mass renormalization for the superconducting sample and the low TcT_{c}(7K) indicate that more than one kind of boson mediated electron-electron interactions exist in MgCx_{x}Ni3_3.Comment: 4 pages, 4 figure

    An integral method for solving nonlinear eigenvalue problems

    Full text link
    We propose a numerical method for computing all eigenvalues (and the corresponding eigenvectors) of a nonlinear holomorphic eigenvalue problem that lie within a given contour in the complex plane. The method uses complex integrals of the resolvent operator, applied to at least kk column vectors, where kk is the number of eigenvalues inside the contour. The theorem of Keldysh is employed to show that the original nonlinear eigenvalue problem reduces to a linear eigenvalue problem of dimension kk. No initial approximations of eigenvalues and eigenvectors are needed. The method is particularly suitable for moderately large eigenvalue problems where kk is much smaller than the matrix dimension. We also give an extension of the method to the case where kk is larger than the matrix dimension. The quadrature errors caused by the trapezoid sum are discussed for the case of analytic closed contours. Using well known techniques it is shown that the error decays exponentially with an exponent given by the product of the number of quadrature points and the minimal distance of the eigenvalues to the contour

    Equation of state and phonon frequency calculations of diamond at high pressures

    Full text link
    The pressure-volume relationship and the zone-center optical phonon frequency of cubic diamond at pressures up to 600 GPa have been calculated based on Density Functional Theory within the Local Density Approximation and the Generalized Gradient Approximation. Three different approaches, viz. a pseudopotential method applied in the basis of plane waves, an all-electron method relying on Augmented Plane Waves plus Local Orbitals, and an intermediate approach implemented in the basis of Projector Augmented Waves have been used. All these methods and approximations yield consistent results for the pressure derivative of the bulk modulus and the volume dependence of the mode Grueneisen parameter of diamond. The results are at variance with recent precise measurements up to 140 GPa. Possible implications for the experimental pressure determination based on the ruby luminescence method are discussed.Comment: 10 pages, 6 figure

    Low temperature electronic properties of Sr_2RuO_4 II: Superconductivity

    Full text link
    The body centered tetragonal structure of Sr_2RuO_4 gives rise to umklapp scattering enhanced inter-plane pair correlations in the d_{yz} and d_{zx} orbitals. Based on symmetry arguments, Hund's rule coupling, and a bosonized description of the in-plane electron correlations the superconducting order parameter is found to be a orbital-singlet spin-triplet with two spatial components. The spatial anisotropy is 7%. The different components of the order parameter give rise to two-dimensional gapless fluctuations. The phase transition is of third order. The temperature dependence of the pair density, specific heat, NQR, Knight shift, and susceptibility are in agreement with experimental results.Comment: 20 pages REVTEX, 3 figure

    Mathematics of Gravitational Lensing: Multiple Imaging and Magnification

    Full text link
    The mathematical theory of gravitational lensing has revealed many generic and global properties. Beginning with multiple imaging, we review Morse-theoretic image counting formulas and lower bound results, and complex-algebraic upper bounds in the case of single and multiple lens planes. We discuss recent advances in the mathematics of stochastic lensing, discussing a general formula for the global expected number of minimum lensed images as well as asymptotic formulas for the probability densities of the microlensing random time delay functions, random lensing maps, and random shear, and an asymptotic expression for the global expected number of micro-minima. Multiple imaging in optical geometry and a spacetime setting are treated. We review global magnification relation results for model-dependent scenarios and cover recent developments on universal local magnification relations for higher order caustics.Comment: 25 pages, 4 figures. Invited review submitted for special issue of General Relativity and Gravitatio

    Alpha-decay branching ratios of near-threshold states in 19Ne and the astrophysical rate of 15O(alpha,gamma)19Ne

    Full text link
    The 15O(alpha,gamma)19Ne reaction is one of two routes for breakout from the hot CNO cycles into the rp process in accreting neutron stars. Its astrophysical rate depends critically on the decay properties of excited states in 19Ne lying just above the 15O + alpha threshold. We have measured the alpha-decay branching ratios for these states using the p(21Ne,t)19Ne reaction at 43 MeV/u. Combining our measurements with previous determinations of the radiative widths of these states, we conclude that no significant breakout from the hot CNO cycle into the rp process in novae is possible via 15O(alpha,gamma)19Ne, assuming current models accurately represent their temperature and density conditions

    Structure and Dynamics of Liquid Iron under Earth's Core Conditions

    Full text link
    First-principles molecular dynamics simulations based on density-functional theory and the projector augmented wave (PAW) technique have been used to study the structural and dynamical properties of liquid iron under Earth's core conditions. As evidence for the accuracy of the techniques, we present PAW results for a range of solid-state properties of low- and high-pressure iron, and compare them with experimental values and the results of other first-principles calculations. In the liquid-state simulations, we address particular effort to the study of finite-size effects, Brillouin-zone sampling and other sources of technical error. Results for the radial distribution function, the diffusion coefficient and the shear viscosity are presented for a wide range of thermodynamic states relevant to the Earth's core. Throughout this range, liquid iron is a close-packed simple liquid with a diffusion coefficient and viscosity similar to those of typical simple liquids under ambient conditions.Comment: 13 pages, 8 figure
    • 

    corecore