27,760 research outputs found

    The Structure and Clustering of Lyman Break Galaxies

    Get PDF
    The number density and clustering properties of Lyman-break galaxies (LBGs) are consistent with them being the central galaxies of the most massive dark halos present at z~3. This conclusion holds in all currently popular hierarchical models for structure formation, and is almost independent of the global cosmological parameters. We examine whether the sizes, luminosities, kinematics and star-formation rates of LBGs are also consistent with this identification. Simple formation models tuned to give good fits to low redshift galaxies can predict the distribution of these quantities in the LBG population. The LBGs should be small (with typical half-light radii of 0.6-2 kpc/h), should inhabit haloes of moderately high circular velocity (180-290 km/s) but have low stellar velocity dispersions (70-120 km/s) and should have substantial star formation rates (15-100 Msun/yr). The numbers here refer to the predicted median values in the LBG sample of Adelberger et al. (1998); the first assumes an Omega=1 universe and the second a flat universe with Omega=0.3. For either cosmology these predictions are consistent with the current (rather limited) observational data. Following the work of Kennicutt (1998) we assume stars to form more rapidly in gas of higher surface density. This predicts that LBG samples should preferentially contain objects with low angular momentum, and so small size, for their mass. In contrast, samples of damped Lyman alpha systems (DLSs), should be biased towards objects with large angular momentum. Bright LBGs and DLSs may therefore form distinct populations, with very different sizes and star formation rates, LBGs being smaller and more metal-rich than DLSs of similar mass and redshift.Comment: 27 pages, 9 figures, MNRAS submitte

    On the Physical Connections between Galaxies of Different Types

    Get PDF
    Galaxies can be classified in two broad sequences which are likely to reflect their formation mechanism. The `main sequence', consisting of spirals, irregulars and all dwarf galaxies, is probably produced by gas settling within dark matter haloes. We show that the sizes and surface densities along this sequence are primarily determined by the distributions of the angular momentum and formation time of dark haloes. They are well reproduced by current cosmogonies provided that galaxies form late, at z \la 2. In this scenario, dwarf ellipticals were small `disks' at z1z\sim 1 and become `ellipticals' after they fall into cluster environments. The strong clustering of dwarf ellipticals is then a natural by-product of the merging and transformation process. The number of dwarf galaxies predicted in a cluster such as Virgo is in good agreement with the observed number. On the other hand, the `giant branch', consisting of giant ellipticals and bulges, is probably produced by the merging of disk galaxies. Based on the observed phase-space densities of galaxies, we show that the main bodies of all giant ellipticals can be produced by dissipationless mergers of high-redshift disks. However, high-redshift disks, although denser than present-day ones, are still not compact enough to produce the high central phase space density of some low-luminosity ellipticals. Dissipation must have occurred in the central parts of these galaxies during the merger which formed them.Comment: 21 pages with 4 figures (reference list updated

    Automatic Metadata Generation using Associative Networks

    Full text link
    In spite of its tremendous value, metadata is generally sparse and incomplete, thereby hampering the effectiveness of digital information services. Many of the existing mechanisms for the automated creation of metadata rely primarily on content analysis which can be costly and inefficient. The automatic metadata generation system proposed in this article leverages resource relationships generated from existing metadata as a medium for propagation from metadata-rich to metadata-poor resources. Because of its independence from content analysis, it can be applied to a wide variety of resource media types and is shown to be computationally inexpensive. The proposed method operates through two distinct phases. Occurrence and co-occurrence algorithms first generate an associative network of repository resources leveraging existing repository metadata. Second, using the associative network as a substrate, metadata associated with metadata-rich resources is propagated to metadata-poor resources by means of a discrete-form spreading activation algorithm. This article discusses the general framework for building associative networks, an algorithm for disseminating metadata through such networks, and the results of an experiment and validation of the proposed method using a standard bibliographic dataset

    Solvable senescence model with positive mutations

    Full text link
    We build upon our previous analytical results for the Penna model of senescence to include positive mutations. We investigate whether a small but non-zero positive mutation rate gives qualitatively different results to the traditional Penna model in which no positive mutations are considered. We find that the high-lifespan tail of the distribution is radically changed in structure, but that there is not much effect on the bulk of the population. Th e mortality plateau that we found previously for a stochastic generalization of the Penna model is stable to a small positive mutation rate.Comment: 3 figure

    Bose-Einstein condensation in linear sigma model at Hartree and large N approximation

    Full text link
    The BEC of charged pions is investigated in the framework of O(4) linear sigma model. By using Cornwall-Jackiw-Tomboulis formalism, we have derived the gap equations for the effective masses of the mesons at finite temperature and finite isospin density. The BEC is discussed in chiral limit and non-chiral limit at Hartree approximation and also at large N approximation.Comment: 11 pages, 9 figure

    Optimal suppression of flow perturbations using boundary control

    Get PDF
    Boundary perturbations are considered as flow control forcing and their distributions are optimised to suppress transient energy growth induced by the most energetic disturbances in the domain. For a given control cost (square integration of the control forcing), the optimal control calculated from the proposed optimisation algorithm is proved to be unique. For small values of control cost, a sensitivity solution is obtained and its distribution indicates the sensitivity of perturbation energy on boundary control. For larger control cost, the distribution of the optimal control approaches the stablest mode of a direct-adjoint operator and tends to be grid-to-grid oscillatory. A controllability analysis is further conducted to identify the uncontrollable component of perturbations in the domain. This work underpins the recently thriving linear feed-back flow control investigations, most of which use empirically distributed control actuators, in terms of choosing the location and magnitude of the control forcing and evaluating the maximum control effect. Two case studies are conducted to demonstrate the proposed algorithm; in a stenotic flow, the optimised wall boundary control is observed to suppress over 95% of the transient energy growth induced by the global optimal initial perturbation; in the Batchelor vortex flow, the optimal inflow control can effectively suppress the spiral vortex breakdown induced by the development of initial perturbations

    Star-forming regions of the Aquila rift cloud complex. I. NH3 tracers of dense molecular cores

    Full text link
    (Abridged) Aims. In the present part of our survey we search for ammonia emitters in the Aquila rift complex which trace the densest regions of molecular clouds. Methods. From a CO survey carried out with the Delingha 14-m telescope we selected ~150 targets for observations in other molecular lines. Here we describe the mapping observations in the NH3(1,1) and (2,2) inversion lines of the first 49 sources performed with the Effelsberg 100-m telescope. Results. The NH3(1,1) and (2,2) emission lines are detected in 12 and 7 sources, respectively. Among the newly discovered NH3 sources, our sample includes the following well-known clouds: the starless core L694-2, the Serpens cloud Cluster B, the Serpens dark cloud L572, the filamentary dark cloud L673, the isolated protostellar source B335, and the complex star-forming region Serpens South. Angular sizes between 40" and 80" (~0.04-0.08 pc) are observed for compact starless cores but as large as 9' (~0.5 pc) for filamentary dark clouds. The measured kinetic temperatures of the clouds lie between 9K and 18K. From NH3 excitation temperatures of 3-8K we determine H2 densities with typical values of ~(0.4-4) 10^4 cm^-3. The masses of the mapped cores range between ~0.05 and ~0.5M_solar. The relative ammonia abundance, X= [NH3]/[H2], varies from 10^-7 to 5 10^-7 with the mean = (2.7+/-0.6) 10^-7 (estimated from spatially resolved cores assuming the filling factor eta = 1). In two clouds, we observe kinematically split NH3 profiles separated by ~1 km/s. The splitting is most likely due to bipolar molecular outflows for one of which we determine an acceleration of <~ 0.03 km/s/yr. A starless core with significant rotational energy is found to have a higher kinetic temperature than the other ones which is probably caused by magnetic energy dissipation.Comment: 28 pages, 22 figures, 6 tables, accepted for publication in A&

    Distributed state estimation in sensor networks with randomly occurring nonlinearities subject to time delays

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the links below - Copyright @ 2012 ACM.This article is concerned with a new distributed state estimation problem for a class of dynamical systems in sensor networks. The target plant is described by a set of differential equations disturbed by a Brownian motion and randomly occurring nonlinearities (RONs) subject to time delays. The RONs are investigated here to reflect network-induced randomly occurring regulation of the delayed states on the current ones. Through available measurement output transmitted from the sensors, a distributed state estimator is designed to estimate the states of the target system, where each sensor can communicate with the neighboring sensors according to the given topology by means of a directed graph. The state estimation is carried out in a distributed way and is therefore applicable to online application. By resorting to the Lyapunov functional combined with stochastic analysis techniques, several delay-dependent criteria are established that not only ensure the estimation error to be globally asymptotically stable in the mean square, but also guarantee the existence of the desired estimator gains that can then be explicitly expressed when certain matrix inequalities are solved. A numerical example is given to verify the designed distributed state estimators.This work was supported in part by the National Natural Science Foundation of China under Grants 61028008, 60804028 and 61174136, the Qing Lan Project of Jiangsu Province of China, the Project sponsored by SRF for ROCS of SEM of China, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany
    corecore