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Abstract

Boundary perturbations are considered as flow control forcing and their distri-

butions are optimised to suppress transient energy growth induced by the most

energetic disturbances in the domain. For a given control cost (square integra-

tion of the control forcing), the optimal control calculated from the proposed

optimisation algorithm is proved to be unique. For small values of control cost,

a sensitivity solution is obtained and its distribution indicates the sensitivity

of perturbation energy on boundary control. For larger control cost, the distri-

bution of the optimal control approaches the stablest mode of a direct-adjoint

operator and tends to be grid-to-grid oscillatory. A controllability analysis is fur-

ther conducted to identify the uncontrollable component of perturbations in the

domain. This work underpins the recently thriving linear feed-back flow control

investigations, most of which use empirically distributed control actuators, in

terms of choosing the location and magnitude of the control forcing and evaluat-

ing the maximum control effect. Two case studies are conducted to demonstrate

the proposed algorithm; in a stenotic flow, the optimised wall boundary control

is observed to suppress over 95% of the transient energy growth induced by the

global optimal initial perturbation; in the Batchelor vortex flow, the optimal

inflow control can effectively suppress the spiral vortex breakdown induced by
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the development of initial perturbations.

1. Introduction

Perturbations to a base fluid flow can be classified into three broad cate-

gories: initial perturbation, external forcing and boundary perturbation, which

can be modelled as the initial condition, body force and boundary condition

of the linearised Navier-Stokes (NS) equations respectively, provided that the

magnitude of the perturbation is small enough. The calculation of the most en-

ergetic distribution of these perturbations has been extensively studied in both

local and global frameworks [1, 2, 3, 4, 5].

The initial perturbations can be in the form of random perturbations, most

unstable eigenmodes or optimal initial perturbations. The fluid dynamics com-

munity have devoted much effort to calculating the most unstable mode in

asymptotically unstable flows or the optimal initial perturbation in stable/weakly

unstable flows. In unstable flows the evolution operator for initial perturbations

has eigenvalues with positive real parts corresponding to unstable eigenmodes

(grow in magnitude with time). For stable/weakly unstable flows, where all the

eigenmodes may decay in the large-time limit, non-normality of the evolution

operator for initial perturbations produces optimal perturbations which can be

expanded as a linear combination of the stable eigenmodes and exhibit transient

energy growth before eventually decaying. The optimal initial perturbation and

its associated energy growth can be obtained through singular value decompo-

sition of the evolution operator or eigenvalue decomposition of a direct-adjoint

operator [4, 6, 7].

For flow behaving as an “amplifier” , which is globally stable but has lo-

cally unstable regions, an initial perturbation study does not capture the full

dynamics — even though transient energy growth can be observed as the per-

turbation passes the unstable region, the flow returns to the unperturbed state

after the perturbation is convected out of the domain. To these perturbation

“amplifiers”, a temporally continuous perturbation is required to keep the un-
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stable region perturbed and model effects of ubiquitously existing noise. Both

boundary perturbations and external forcing can be used to continuously per-

turb the flow [8, 9]. The optimal external forcing can be obtained by singular

value decomposition of the resolvent [1, 10] and the optimal boundary perturba-

tion can be obtained by singular value decomposition of the evolution operator,

eigenvalue decomposition of the direct-adjoint operator or optimisation of the

final perturbation energy [11].

The counterpart of calculating the most energetic perturbation and its out-

come is to control or suppress the development of perturbations. Such a sup-

pression can be achieved by modifying the base flow profile to be less sensitive to

perturbations, or introducing control whose development cancels the objective

perturbation [12, 13, 14]. The suppression of perturbation growth, e.g. transient

energy growth induced by the optimal initial perturbation, can be achieved by

means of boundary control. Such control investigations involve the interaction

of at least two types of perturbations: an initial perturbation (and its outcome)

in the domain as the control objective and the boundary perturbation as the

control variable. To control the growth of a given perturbation, e.g. the optimal

initial perturbation, an open-loop control algorithm has been developed in a lo-

cal framework, where the spatial variation of the control perturbation is fixed

and the time sequence is calculated [15]. To control developments of unknown

perturbations, linear feed-back control based on reduced-order modelling has

received considerable attention most recently to control instabilities or tran-

sient responses in asymptotically unstable flow and convectively unstable flow

respectively [16, 17, 18, 19]. Most of these feed-back control investigations focus

on the temporal variation of the control signal produced by actuators whose

spatial locations are determined empirically.

In the present work, we concentrate on the spatial location of the boundary

control, which is optimised to minimize the energy of perturbations stemming

from any of the types of perturbations discussed above. Adopting the optimal

initial perturbation and its outcome as the control objective, the computed opti-

mal boundary control indicates the sensitivity of the most energetic component
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of a random noise to the control and therefore can be used to choose locations of

actuators and magnitude of the control forcing in feed-back control studies. A

controllability analysis is further conducted by relaxing the constraint on control

cost, to predict the uncontrollable component of the objective perturbation.

We then demonstrate the proposed algorithms in two case studies. A wall

bounded stenotic flow is adopted as the first example and the wall-normal

boundary perturbations are optimised to suppress transient energy growth of

the global optimal initial perturbation. Then the Batchelor vortex flow is con-

sidered as the second example, and the inflow control is optimised to suppress

spiral vortex breakdown induced by the development of initial perturbations.

2. Optimization methodology

2.1. Governing equations

Starting from the incompressible NS equations

∂tU = −U · ∇U −∇P +Re−1∇2U , with ∇ ·U = 0,

where P is the modified or kinematic pressure, U is the velocity vector and Re

is the Reynolds number; the flow field can be decomposed as the sum of a base

flow and a perturbation i.e. (U , P ) = (ū, p̄)+(u, p). Then the evolution of small

perturbations is governed by the linearised NS (LNS) equations

∂tu = −ū · ∇u− (∇ū)T · u−∇p+Re−1∇2u, with ∇ · u = 0. (1)

As (1) is linear, one can further decompose the perturbation field into span-

wise Fourier modes in Cartesian coordinates or azimuthal Fourier modes in

cylindrical coordinates, each of which will evolve independently, provided that

the base flow is homogeneous in the spanwise or azimuthal direction. In the

following, we will typically be dealing with (u, p)m, with m denoting the span-

wise/azimuthal wave number. To keep notations reasonably compact we implic-

itly adopt Fourier decomposition for the perturbation field, and only introduce

its spanwise/azimuthal Fourier mode index m when required.
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2.2. Definition of operators

For clarification, we firstly introduce scalar products

(a, b) =

∫
Ω

a · bdV and [e,f ] =

∫
∂Ω

e · f dS,

where a and b are defined on the spatial domain Ω, e and f are defined on the

“control boundary” ∂Ω, which refers to the segment of the boundary where the

control perturbation is introduced, and τ is a final time.

On the control boundary, a boundary-normal Dirichlet-type condition, de-

noted as uc(x, t), is imposed. Here x represents the spatial coordinates on the

control boundary. To reduce the dimension of uc(x, t) after temporal-spatial

discretization, we decompose the temporal and spatial dependence as

uc(x, t) = c(x)f(t, ω), with 0 ≤ t ≤ τ, and x ∈ ∂Ω (2)

where c(x) is the spatial dependence to be optimized and f(t, ω) is a prescribed

temporal dependence function in which ω is a circular frequency [9, 11]. The

choice of f(t, ω) will be discussed in detail in the following case studies. We

note that the magnitude of the control can be evaluated by the integration of

the spatial dependence, i.e. Ec = [c, c], which can be interpreted as the control

cost.

To describe the development of the boundary perturbation, we define an

evolution operator N satisfying

ucτ = Nc,

where ucτ is the velocity vector of the response flow field to the boundary

perturbation at time τ . This operator corresponds to the integration of (1)

with initial condition u|t=0 = 0 and boundary condition as specified in (2) on

the control boundary.

Similar as discussed in [9], A dual operator of N is defined such that

(Nc, b) = [c,N ∗b]. (3)
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Clearly this dual operator projects a velocity vector defined on the computa-

tional domain to a vector defined on the control boundary. The action of this

dual operator on a velocity vector u∗
τ can be calculated as

N ∗u∗
τ = n ·

∫ τ

0

(p∗n− Re−1∇nu
∗)f∗(t, ω) dt, (4)

where n is a unit outward normal on the control boundary, f∗(t, ω) is the

adjoint operator of f(t, ω) satisfying [f(t, ω)c, e] = [c, f∗(t, ω)e], and p∗ and u∗

are adjoint velocity and adjoint pressure respectively. The adjoint variables are

obtained by integrating the adjoint equations

−∂tu∗ = ū · ∇u∗ −∇ū · u∗ −∇p∗ + Re−1∇2u∗, with ∇ · u∗ = 0, (5)

backwards from t = τ to t = 0 after initiating the adjoint velocity as u∗
τ and

implementing zero Dirichlet conditions on the control boundary [9].

2.3. Lagrangian functional

For a flow perturbed by both initial and boundary perturbations, the con-

tribution of initial and boundary perturbations to the final velocity vector can

be decomposed as a consequence of the linearization:

uτ = uiτ + ucτ ,

where ucτ = Nc is the response of the flow field to the boundary perturbation

while uiτ is the transient outcome of a given initial perturbation at t = τ and is

considered to be a known velocity vector. The kinetic energy of the controlled

flow field at t = τ is

E = (uτ ,uτ ) = (uiτ ,uiτ ) + [2N ∗uiτ +N ∗Nc, c],

where the first term after the second equality is the energy of the uncontrolled

outcome of the initial perturbation and the second term is a function of the

control perturbation. Note that the dual relationship (3) is used to obtain this

expression.
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Taking into account the constraint on the control cost, we define a La-

grangian functional to minimise,

L = E + λ(Ec − [c, c]), (6)

where the first term is the total controlled energy and the second term is a

constraint on the magnitude of the control. In the second term, λ is a Lagrangian

multiplier and Ec can be interpreted as the control cost. This constraint on the

magnitude of the control perturbation can be recovered by setting the first

variation of the Lagrangian functional with respect to λ to zero.

Taking the first variation of the Lagrangian with respect to the control per-

turbation, we have

δL(δc) = [2N ∗uiτ + 2N ∗Nc− 2λc, δc]. (7)

Following the definition of a Gateau differential of a Lagrangian functional (see

e.g. [15]), the gradient of the Lagrangian functional with respect to the control

perturbation, denoted as ∇cL, can be evaluated as

∇cL = 2N ∗uiτ + 2N ∗Nc− 2λc. (8)

Clearly this gradient is a function of the uncontrolled transient response uiτ ,

the control boundary perturbation c and an Lagrangian multiplier λ. The value

of λ at the minimiser of the lagrangian functional can be obtained by setting

this gradient to zero, so

λ =
[N ∗uiτ +N ∗Nc, c]

[c, c]
. (9)

We see that when the control cost Ec is small, c is small, and the magnitude

of Nc is small compared with uiτ . Therefore for sufficiently small control cost,

the second and third terms on the right side of (8) are negligible compared with

the first one. By removing these two terms, we see that the optimal control c

is parallel with N ∗uiτ but with an opposite direction:

c = −N ∗uiτ
√
Ec/[N ∗uiτ ,N ∗uiτ ]1/2.
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In the following, this solution will be denoted as the sensitivity solution, since

its distribution represents the sensitivity of the perturbations in the domain

on boundary control, as similarly documented in base flow modification studies

[12, 13, 14]. Such a solution can be used to choose the location of actuators in

feed-back control. We note that the calculation of the sensitivity solution only

requires a solo integration of the adjoint equations (the action of N ∗ on uiτ ).

2.4. Optimization procedure

As presented above, the optimisation of the control forcing at a given control

cost involves the computation of the minimiser of a Lagrangian functional, and

the integration of the linearized NS equations and the adjoint equations. The

optimisation procedures can be summarised as follows.

1. Initialize the adjoint equations (5) with u∗(τ) = uiτ , which can be the

outcome of the optimal initial perturbation, and integrate backwards to

calculate N ∗uiτ through (4).

2. Initialize c using random noise and integrate the LNS equations (1) to

obtain Nc.

3. Integrate the adjoint equations (5) to obtain N ∗Nc.

4. Substitute N ∗uiτ and N ∗Nc into (8) to calculate ∇cL.

5. Calculate the search direction P(∇cL) as presented in Appendix A and

evolve the result using the LNS equations (1) to obtain NP.

6. Calculate the optimal step length αopt following the procedure outlined in

Appendix A, and update c and Nc from step k to k + 1 along direction

P,

c̃k+1 = ck + αoptP, and N c̃k+1 = Nck + αoptNP.

7. Scale the updated results in step 6 to satisfy the constraint on control

cost:

ck+1 = βc̃k+1 and Nck+1 = βN c̃k+1 with β =

(
Ec

[c̃k+1, c̃k+1]

)1/2

.

8. Repeat steps 3–7 until the solution c converges.
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2.5. Uniqueness of the optimal boundary perturbation

In this section, we demonstrate that the Lagrangian functional defined in

(6) has only one minimizer at each given value of control cost Ec even though

this function is not convex, and therefore the optimal control obtained from the

calculation procedure in § 2.4 is unique.

At the equilibrium state where the gradient ∇cL vanishes, we have

N ∗uiτ +N ∗Nc− λc = 0. (10)

Here λ can be considered as a function of c defined in (9). Evaluating the second

variation of the Lagrangian functional with respect to c at this equilibrium state,

we obtain

δ2L(δc) = 2[N ∗N δc, δc]− 2λ[δc, δc].

Here the joint operator N ∗N is self-adjoint, and therefore when this operator

is discretized to form an N ×N matrix, with N denoting the dimension of the

discretised velocity variable, this matrix has N real and non-negative eigenvalues

and N orthogonal eigenvectors. We denote the eigenvalue and eigenvector pair

of this matrix as λi and vi (i = 1, . . . , N), where 0 ≤ λ1 ≤ λ2, . . . , λN and vi is

normalized so that [vi,vi] = 1. Therefore the eigenvectors vi form a complete

base on RN and the variation of c can be projected onto this basis as

δc =

N∑
i=1

aivi.

Then we have

δ2L(δc) =

N∑
i=1

2a2i (λi − λ).

If λ ≥ λN , δ2L ≤ 0, and this equilibrium state is a maximum; if λ ≤ λ1,

δ2L ≥ 0, and this equilibrium state is a minimum; if λ1 < λ < λN , the sign of

δ2L is undetermined, and this equilibrium state is an inflection point.

To illustrate that there is only one solution of c satisfying λ(c) ≤ λ1, we first

decompose N ∗uiτ and c as a linear summation of the eigenvectors of N ∗N ,

N ∗uiτ =

N∑
i=1

bivi and c =

N∑
i=1

civi,
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Figure 1: Illustration of λ as a function of the minimum, maximum and inflection points of

the Lagrangian functional.

and substitute them into (10) to reach

bi + λici = λci with 1 ≤ i ≤ N. (11)

Considering the constraint on control cost, i.e. Ec − [c, c] = 0, we have∑N
i=1 c

2
i = Ec. Then we define a function

F (σ) =

N∑
i=1

b2i
(σ − λi)2

− Ec. (12)

Combining (11) and (12), we see that λ is the root of function F (σ). This

function is monotonic for σ ∈ (−∞, λ1] with F (−∞) = −Ec < 0 and F (λ1) =

∞ > 0. Therefore the function F (σ) has only one root in the range ∈ (−∞, λ1]

and this root is λ. Therefore for a given control cost Ec, λ is unique. From (11),

we see that this unique value of λ corresponds to a unique sequence of ci and

so a unique solution of c.

It is observed in (12) that as Ec increases, λ is closer to λ1 and the weight of

v1 in the optimal perturbation, c1 = b1/(λ− λ1), increases in magnitude faster

than other ci. When Ec →∞, λ→ λ1 and c→ c1v1. Since v1 is discretization-

dependent and its spatial distribution is highly oscillatory, it can be expected

that the optimal perturbation converges more slowly at higher values of control

cost Ec.

It is noted that for λ ∈ (−∞, λ1] there is singularity in (12) if b1 = 0. At

this singular condition, define a reduced version of functional F (σ) as

Fr(σ) =

N∑
i=2

b2i
(σ − λi)2

− Ec.

This reduced function Fr is also monotonic for σ ∈ (−∞, λ1]. Then two possible

10



solutions of λ ∈ (−∞, λ1] and its associated c can be derived:

(i) λ = λ1 with ci =
bi

λ1 − λi
for 2 ≤ i ≤ N and c21 = −Fr(λ1).

(ii) λ < λ1 with ci =
bi

λ− λi
for 2 ≤ i ≤ N and c1 = 0.

If Fr(λ1) ≤ 0, solution (i) is a valid solution while solution (ii) is not, because

for solution (ii), F (λ) = Fr(λ) < Fr(λ1) ≤ 0 and the constraint on control cost

is broken. If Fr(λ1) > 0, solution (i) is not valid since c2i < 0 while solution

(ii) is valid, since there exists λ < λ1 satisfying −Ec = F (−∞) < F (λ) = 0 <

F (λ1) = Fr(λ1). Therefore even when the singularity associated with b1 = 0

exists, there is still only one minimum point for the Lagrangian functional in

the range λ ∈ (∞, λ1].

In summary, there is only one solution of λ in the range (∞, λ1], and cor-

respondingly the Lagrangian functional has only one minimizer for any given

control cost while analogously it can be demonstrated that this Lagrangian

functional has only one maximizer and potentially some inflection points, as

illustrated schematically in figure 1.

2.6. Controllability analysis

As discussed above, an optimal boundary perturbation minimizing the tran-

sient energy growth exists at a given control cost. In this subsection, we relax

the constraint on control cost and calculate the optimal control across all values

of the control cost. This “global” optimal control evaluates the controllability

of the perturbations in the domain by boundary forcing. If partitioning the

transient response to an initial perturbation into two parts: one that can be

suppressed by boundary perturbations and the other that is out of the reach

of boundary control and cannot be controlled regardless of the distribution and

magnitude of the control, then the maximum control effect, which completely

suppresses the first part, can be achieved by this “global” optimal control.

As discussed in § 2.5, assume that the operator N ∗N is discretized into a

N ×N matrix. The eigenvalues and eigenvectors of this matrix are denoted as
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λi and vi, where 1 ≤ i ≤ N . Then the eigenvectors vi can be projected from

the control boundary ∂Ω to the computational domain Ω by integrating LNS

equations to reach orthogonal vectors Nvi,

(Nvi,Nvj) = [N ∗Nvi,vj ] = λi[vi,vj ] =

λi, i = j

0, i 6= j

Since the dimension of the boundary perturbations is smaller than that of its

response field, this orthogonal space (Nv1, Nv2, . . . , NvN ) defined in Ω does

not form a complete basis. Therefore the transient response field to be controlled

can be decomposed as

uiτ =

N∑
i=1

diNvi + uout

where uout denotes the component of uiτ that cannot be projected to this

incomplete space and thus is uncontrollable by boundary perturbations.

The energy of uout quantitatively describes the controllability of uiτ using

boundary perturbation control. The energy associated with this uncontrollable

component is

Eg = (uout,uout) = minc

(
uiτ −

(uiτ ,Nc)

(Nc,Nc)
Nc,uiτ −

(uiτ ,Nc)

(Nc,Nc)
Nc

)
= minc

(
(uiτ ,uiτ )− [N ∗uiτ , c]2

[N ∗Nc, c]

)
.

Here the subscript g indicates that the controlled total energy, reached at the

“global” optimal control – over all the values of control cost or without constraint

on the magnitude of the control perturbation.

Since there is no constraint on the control cost, the total energy Eg can be

considered as the objective functional to minimise. The gradient of Eg with

respect to c is

∇cEg = 2
[N ∗uiτ , c]2

[N ∗Nc, c]2
N ∗Nc− 2

[N ∗uiτ , c]

[N ∗Nc, c]
N ∗uiτ . (13)

Similarly as presented in § 2.4, the global optimal control cg can be obtained.

The magnitude of this control can be evaluated by the control cost Ecg = [cg, cg].
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Setting ∇cEg to zero, we notice that the distribution of this “global” op-

timal perturbation can be analytically expressed as (N ∗N )−1N ∗uiτ . N ∗N is

a self-adjoint operator with real eigenvalues, and when acting on a perturba-

tion vector, its largest eigenvalue (and the corresponding most energetic eigen-

mode) presents the dominant amplification effect. However, when its inverse,

i.e. (N ∗N )−1, acting on a perturbation, the smallest eigenvalue (and the cor-

responding least energetic eigenmode) of N ∗N becomes dominant. We note

that as a continuous operator, N ∗N does not have a least energetic eignen-

mode. However when N ∗N is discretised, this eigenmode can be calculated,

even though it is discretiziation-dependent and becomes more spatially oscil-

latory as the discretization is refined. Therefore we expect that the “global”

optimal perturbation will converge slowly and is spatially highly oscillatory.

It is worth noting that the optimal perturbation cg is also the equilibrium

state of L at control cost Ec = Ecg and corresponds to λ = 0. As the resolution

increases, λ1 → 0, and cg tends to be parallel with v1, inducing poor conver-

gence. This analysis also suggests that the control cost Ec should not exceed

Ecg, since any extra cost does not contribute to suppressing the transient effects.

3. Case 1 — steady stenotic flow

In this section, we test the methodology introduced above in the context of

an open, wall-bounded flow: stenotic flow. The geometry of the stenotic flow is

introduced in § 3.1, a convergence test is conducted in § 3.2 and then the opti-

mal wall-normal boundary perturbation is calculated to optimally suppress the

transient energy growth induced by the global optimal initial perturbation and

the controllability analysis is also conducted by relaxing constraint on the con-

trol cost in § 3.3. The optimal initial perturbation and its outcome are adopted

as the control objective because they are also the focal of feed-back control of

noise developments. It will be shown that while the boundary transpiration is

applied without restriction all along the outer wall of the domain, in practice the

optimal boundary perturbation is highly localised near the stenotic contraction.
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Figure 2: Stenosis geometry, with a co-sinusoidal shape, L = 2D and D = 2Dmin.

3.1. Problem description

As shown in figure 2, the stenosis has a 75% co-sinusoidal occlusion and a

length which is twice the upstream pipe diameter, D. We adopt a cylindrical

coordinate system with its origin at the centre of the stenosis throat. The (axial,

radial, azimuthal) position coordinates are (z, r, θ). Velocities are normalized

by the bulk flow speed u of the upstream Hagen–Poiseuille flow, and the length

scale adopted is the upstream pipe diameter D, giving D/u as the time scale,

and Reynolds number Re = uD/ν, as used in a previous work [20]. Hereafter in

this case study we adopt dimensionless variables based on these normalizations.

We consider the Reynolds number Re = 400 for which the base flow is asymp-

totically stable; the same Reynolds number was the main focus of attention in

the transient growth study in [21]. At Re = 400, the maximum energy growth of

initial perturbations, 8.94×104, occurs for a dimensionless time horizon τ = 4.43

at azimuthal wavenumber m = 1 [21]. In the remainder of this section, m = 1

is adopted and the outcome of the related global optimal initial perturbation at

t = 4.43 is considered as the control target uiτ . The optimal initial perturbation

is normalised such that the initial state energy is (ut=0,ut=0) = 1 and therefore

the uncontrolled final state energy is (uiτ ,uiτ ) = 8.94× 104.

3.2. Discretization and convergence test

Spectral elements employing piecewise continuous nodal-based polynomial

expansions within mapped-quadrilateral elemental subdomains are adopted for

spatial discretization of the axisymmetric geometry in the meridional semi-

plane, coupled with a Fourier decomposition in azimuth. Since the azimuthal
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Figure 3: The temporal dependence of the boundary velocity perturbation in the stenotic

flow, f(t, ω), as defined in (14). The dashed line represents the envelope of this function.

velocity for the base flow is zero, a complex mode for perturbations with az-

imuthal wavenumber m can be further decomposed to a pair of modes [22].

Time integration is carried out using a second-order-time velocity-correction

scheme. Details of the discretization and its convergence properties are given in

[23]. The same numerics are used to compute base flows and the actions of the

LNS and adjoint operators. The temporal dependence function f(t, ω), which

eliminates the spatial discontinuities at t = 0 and t = τ is defined as

f(t, ω) = (1− e−t
2

)(1− e−(t−τ)2) cos(ωt). (14)

Therefore the adjoint operator f∗(t, ω) = f(t, ω). This function is purely real

since we have decomposed the complex mode to a pair of modes with restricted

symmetry. This time-dependence function with τ = 10 and ω = 5 is illustrated

in figure 3, where we see that it effectively sets the boundary perturbation uc

to zero at the beginning and end of the computation. Therefore the boundary

conditions and initial conditions are compatible for both the LNS equations and

the adjoint equations [9].

As a convergence test we calculate λN , i.e. the largest eigenvalue of N ∗N .

Three structured grids, denoted as “A” , “B” , “C” , are tested. Mesh “A”

consisting of an array of (streamwise × vortical) 187× 9 elements is illustrated

in figure 4. Meshes “B” and “C” are denser in z and y directions compared

with “A”, consisting of arrays of 219× 9 and 187× 11 elements respectively.
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Figure 4: Spectral element mesh for the stenotic flow: (a) overall mesh (note use of expanded

radial scale), and (b) mesh around the contraction section (true aspect ratio).

On the inflow and outflow boundaries, zero-Dirichlet and computed Neu-

mann conditions are used for velocity and pressure respectively in both forward

and backward integrations. On the solid wall, optimal control and zero Dirichlet

conditions are used for the velocity components in the forward and backward

integrations respectively while the pressure condition is a computed Neumann

type for both integrations [24]. On the axis, boundary conditions depend on the

azimuthal wave number m and solution variable, and these are zero-Dirichlet

or zero-Neumann [23]. The initial condition for the forward system is set to

zero while the backward integration is initialized by the outcome of the forward

integration [9].

Convergence of λN with respect to the tensor-product polynomial order P

in the spectral element mesh is presented in table 1. We see that the result has

converged to five significant figures at P = 5 for mesh “A” and is insensitive

to further mesh refinement. In the following calculations, mesh “A” is adopted

with P = 5.

The variation of λN with ω is presented in figure 5 (a) for τ = 4.43, where

we see λN reaches a maximum at ω = 7.5. The corresponding profiles of eigen-

vectors, which are optimal wall-normal boundary perturbations that generate

maximum energy growth over τ are shown in figure 5 (b). Since the optimal

wall-normal boundary perturbation is concentrated in the contraction section,

we have truncated the range of z represented from [−5, 70] to [−2, 4] in order

to better illustrate the distribution of the perturbation.
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Mesh P λN

A 3 7.97994×104

A 4 8.00318 ×104

A 5 8.00358 ×104

A 6 8.00361 ×104

A 7 8.00361 ×104

A 8 8.00361 ×104

B 6 8.00361 ×104

C 6 8.00361 ×104

Table 1: Convergence of λN with respect to both mesh and the tensor product polynomial

order P for the stenotic flow at Re = 400, ω = 0 and τ = 4.43.
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Figure 5: (a) Variation of the largest eigenvalue λN , i.e. the gain of the optimal boundary

perturbation, with temporal frequency ω at τ = 4.43 and (b) profiles of vN , i.e. the optimal

boundary perturbation, at ω = 0 and ω = 7.5 for the stenotic flow. The perturbation for

z ∈ [−5,−2]
⋃

[4, 70] is negligible and not represented.
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Figure 6: (Colour online.) Contour of control effectiveness J , as defined in (15) at various

control costs and frequencies for the stenotic flow.

3.3. Results

To demonstrate the proposed optimization method, we calculate the bound-

ary perturbation that minimizes the transient effect of the global optimal initial

perturbation obtained at Re = 400, corresponding to m = 1 and τ = 4.43 with

energy growth G = 8.94× 104 [21].

The effectiveness of using boundary perturbations to control the transient

effect can be modelled as

J =
(uiτ ,uiτ )− E

Ec
, (15)

where the numerator is the transient energy suppressed by the control and the

denominator is the control cost (see figure 6).

Comparing with figure 5(a), we notice that the control effectiveness is not

as sensitive to the frequency as the gain of boundary perturbations. It is also

observed that the effectiveness drops for increasing control cost. At the smallest

value of Ec considered, the control effectiveness reaches 108. This is because

when the control is small enough, the effectiveness can be approximated as

2(Nc,uiτ )/Ec, where Nc and uiτ take advantage of the amplification of the
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Figure 7: (a) The control cost at various frequencies obtained from controllability analyses and

(b) global control effectiveness from controllability analyses, defined in (16), for the stenotic

flow.

base flow to boundary and initial perturbations respectively, resulting in a large

value of control effectiveness. The solution converges slowly for Ec > 104 and

at this range of Ec, the effectiveness has dropped significantly compared with

that at low levels of Ec. Therefore higher values of Ec have not been examined.

The control cost at which the energy E is minimized at a fixed frequency

ω can be obtained from the controllability analysis, as shown in figure 7 (a).

It is noted that the control cost to cancel as much transient energy as possible

varies with the frequency dramatically and the minimum control cost is obtained

around ω = 5. The transient effect that cannot be controlled by boundary

perturbations, represented as Eg, are not sensitive to the frequency and therefore

we define a variable to denote the global effectiveness of control as

Jg =
(uiτ ,uiτ )− Eg

Ecg
, (16)

which evaluates the ratio of suppressed transient energy and the control cost

(see figure 7 (b)).

In the following we focus on two cases: one with ω = 5, which is indi-

cated from the controllability analysis as the “global” optimal frequency and

the other with ω = 0, which corresponds a steady boundary control except at

the beginning and end of the time horizon considered.
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Figure 8: Distribution of the optimal boundary perturbations to the stenotic flow at (a) ω = 0

and (b) ω = 5.

The optimal perturbations at ω = 0 are plotted in figure 8(a). To compare

the distribution of optimal perturbations at various control costs, the perturba-

tions are normalized so that [c, c] = 1. We see that at small values of control

cost Ec, the optimal perturbation almost overlaps with the sensitivity solution,

which is parallel and opposite with N ∗uiτ , as expected. At higher values of Ec,

the weight of v1, i.e. the least energetic mode whose distribution is grid de-

pendent, increases in the optimal boundary perturbation, and therefore results

in a more oscillatory profile. cg is the optimal perturbation calculated from

controllability analyses corresponding to control cost Ecg = 1.52 × 104. This

global optimal solution across all values of control costs is also highly oscilla-

tory and the energy distribution spreads from the contraction segment to the

downstream segment. The same results for ω = 5 is shown in figure 8(b), where

the global optimal solution cg corresponds to Ecg = 1.36× 103.

The evolution of energy for both controlled and uncontrolled conditions is

illustrated in figure 9, where we see that the transient effect is suppressed sig-

nificantly by the boundary perturbations and under the control of cg, over 95%

of the transient energy growth is cancelled.

We note that the controlled energy can be decomposed as (uit,uit)+2(uit,uct)+

(uct,uct), where uit and uct are the perturbations at time t induced by the

initial perturbation and boundary control respectively. The first term is the un-
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Figure 9: Energy history of the controlled and uncontrolled evolution of the global optimal

initial perturbation to the stenotic flow at (a) ω = 0 and (b) ω = 5.
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Figure 10: (a) −2(uit,uct) and (b) (uct,uct) at ω = 0 for the stenotic flow.
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(a)

(b)

(c)

Figure 11: (Colour online.) Contours of azimuthal vorticity for outcome of the optimal initial

perturbation to the stenotic flow at t = τ = 4.43. (a) without control; (b) and (c) with control

cg at ω = 0 and ω = 5 respectively.

controlled energy, the second one denotes the interaction of the control and the

objective perturbation, and the last one is induced by the control. Considering

that the control reduces the total energy, the second term is negative, while the

last one is positive. The control effect depends on the balance of the last two

terms, as illustrated in figure 10. We see that when Ec increases from 10 to

100, both terms (the interaction term is reversed to be positive) rise to values

significantly larger than the uncontrolled energy, and therefore the control effect

is realised by the difference of two large terms. At Ecg, the interaction term

is much larger than the control induced term, indicating that the control effect

becomes more efficient than the Ec = 10 and 100 cases.

The final outcomes of the controlled and uncontrolled flow field are presented

in figure 11. Clearly under the optimal control cg obtained at ω = 0 and ω = 5,

the final perturbation has spread to a larger space owing to the continuous

control perturbation, which keeps the close downstream region of the contraction

section perturbed. Nevertheless, the total energy is dramatically lower than that

of the uncontrolled perturbation.
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4. Case 2 — Batchelor vortex flow

In this section, we implement the optimal control methodology in the context

of an open unbounded flow, the Batchelor vortex flow. The mathematical model

and stability characteristics of the Batchelor flow are introduced in § 4.1; a con-

vergence test is conducted in § 4.2; and then the optimal inflow-normal boundary

perturbation is calculated to suppress the transient energy growth induced by

the global optimal initial perturbation, and direct numerical simulations (DNS)

are conducted to study the control effects on spiral vortex breakdown in § 4.3.

4.1. Problem description

The Batchelor vortex can be represented in cylindrical coordinates (z, r, θ)

as [25]

ū(r) = a+ e−r
2

, v̄(r) = 0, w̄(r) = q/r(1− e−r
2

),

where a denotes the external non-dimensional free-stream axial velocity. The

streamwise velocity maximises at r = 0 and reduces monotonically in the radial

direction, while the azimuthal velocity maximises at r = 1.12, which can be

considered as a measurement of the vortex core. It has been noted by [26]

that the translation and inversion of the axial velocity ū(r) do not affect the

instability of the Batchelor vortex: they only affect the frequency but the growth

rates remain unchanged. Therefore to simplify the model, a = 0 is adopted

throughout this study. The parameter q is the swirl strength and for q < 2.31

the Batchelor vortex is unstable in the inviscid limit [27, 28]. In this work we

adopt q = 0.8 in order to energize the helical instabilities which initiate the

spiral vortex breakdown [29, 30]. In this case, the Reynolds number is defined

as Re = ∆ūR0/ν, where ∆ū is the dimensional velocity excess in the core of

the vortex, R0 is a measurement of the radius of the vortex core and ν is the

kinematic viscosity. In this case study, the Reynolds number is set to Re = 1000

in the interest of balancing values of practical interest against computational

cost.
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Figure 12: Spectral subdomains for the Batchelor vortex.

4.2. Discretization and convergence test

The numerical method is the same as used in § 3. Because the azimuthal

velocity in the base flow is non-zero, the perturbation is complex. Therefore we

adopt a complex temporal dependence function f(t, ω),

f(t, ω) = (1− e−t
2

)(1− e−(t−τ)2)eiωt. (17)

We see that the adjoint operator f∗(t, ω) = f(t,−ω). Clearly the real part of

this function is the same as that used in the stenotic flow. This time-dependence

function sets the boundary perturbation uc(x, t) to zero at the beginning and

end of the computation to eliminate spatial discontinuity at the beginning of

the forward and backward integrations [9].

The computational domain and boundaries are illustrated in figure 12. On

the inflow boundary, Dirichlet-type control and zero Dirichlet conditions are

used for the velocity components in the forward and backward integrations re-

spectively while the computed Neumann conditions are used for pressure bound-

ary conditions in both integrations. On the far-field boundary, zero-Dirichlet

and computed Neumann conditions are used for velocity and pressure respec-

tively in both forward and backward integrations. On the axis, boundary con-

ditions depend on the azimuthal wave number as discussed in [23]. The out-

flow boundary deserves some special concerns. Since the developing of helical

structures around the outflow boundary intuitively excludes the choice of zero-
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P G λN

3 1.5956× 108 3.0376× 104

4 1.5748× 108 3.9649× 104

5 1.5561× 108 4.0465× 104

6 1.5527× 108 4.0683× 104

7 1.5509× 108 4.0734× 104

8 1.5498× 108 4.0745× 104

Table 2: Convergence of G and λN with respect to the polynomial order P at Re = 1000,

ω = 0, m = 3 and τ = 30.

Dirichlet velocity condition for the forward integration, we adopt the combi-

nation of conditions for the forward and adjoint systems as presented in [11].

The initial condition for the forward system is set to zero while the backward

integration is initialized by the outcome of the forward integration [9].

As a convergence test we calculate the optimal initial perturbations and

optimal inflow boundary perturbations which induce largest energy growth over

a fixed time interval τ = 30, which will be used as the defaulted value of final

time in this section. The convergence of G (the largest energy growth induced

by the optimal initial perturbation) and λN with respect to the polynomial

order P used in the polynomial expansion in each spectral element is presented

in table 2. We see that at P = 5, both G and λN have converged to within

tolerance 0.01. In all the following calculations in this case, we adopt P = 5,

the same as used in the case of stenotic flow.

4.3. Results

The optimal inflow perturbations are calculated to minimize the transient

energy growth of the optimal initial perturbations associated with the helical

instabilities of the Batchelor vortex. Two azimuthal wavenumbers, m = 1 and

m = 2 are considered. The transient energy growth induced by the optimal

initial perturbation is G = 9.02× 103 for m = 1 and G = 1.53× 107 for m = 2
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(a) (b)

Figure 13: (Colour online.) Contour of control effectiveness J , defined in (15), at various

control costs and frequencies for the vortex flow at azimuthal wavenumbers (a) m = 1 and

(b) m = 2. The Reynolds number Re = 1000, swirl strength q = 0.8 and final time τ = 30

are used here and in all the following plots.

for the computational domain and parameters considered (τ = 30, q = 0.8 and

Re = 1000). We note that the transient growth at m = 2 is much higher than

that at m = 1. This is consistent with previous local stability studies, which

revealed that the Batchelor vortex is much more unstable at m = 2 than at

m = 1 (the maximum growth rate rises from around 0.17 at m = 1 to 0.31 at

m = 2 in the inviscid limit) [26]. The initial perturbation is normalised to have

unit energy and therefore the uncontrolled final state energy is E = 9.02× 103

and E = 1.53× 107 for m = 1 and m = 2 respectively.

The effectiveness of using boundary perturbations to control the transient

effects is illustrated in figure 13. The solution converges slow for Ec > 102 and

at this range of Ec, the effectiveness has dropped significantly compared with

that at low levels of Ec. Therefore higher values of Ec are not tested. We see

that the effectiveness drops for increasing control cost and maximizes at ω = 0.

Therefore in the following we focus on the steady control perturbation with

ω = 0.

The optimal perturbations at ω = 0 are plotted in figure 14. To compare the

distribution of optimal perturbations at various control costs, the perturbations

are normalized so that [c, c] = 1. We see that at small values of control cost
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Figure 14: Distribution of the optimal inflow control to the vortex flow at (a) m = 1 and (b)

m = 2 with ω = 0. “real” and “imag” denote the real and imaginary parts of the inflow-normal

perturbation, respectively. The thick dashed lines represent the vortex radius r = 1.12.

Ec, the optimal control overlaps with the direct solution as expected. As the

control cost increases, the weight of v1 becomes more dominant in the optimal

control and therefore results in a more spatially oscillatory profile, similarly as

observed in the stenotic flow case (see figure 8).

The controlled and uncontrolled evolution of the optimal initial perturba-

tions are illustrated in figure 15, where we see that the transient effect is sup-

pressed significantly by the boundary perturbations. Nonlinear evolution of the

controlled and uncontrolled flow is also investigated by DNS of the base flow

initially perturbed by the optimal initial perturbation with relative energy level

l (ratio between perturbation energy and base flow energy) and plotted in figure

15 to compare against the linearized evolution. We see that the optimal control

suppresses the transient energy growth significantly in both linearized and non-

linear calculations and the growth in DNS does not reach the optimal growth

in the linearized evolution owing to the nonlinear saturation.

The final outcomes of the controlled and uncontrolled flow field in linearized

developments are presented in figure 16. We see that during the linearized

evolution, the perturbations are convected downstream and amplified to form

spiral structures. Under the control of optimal boundary perturbations, the

magnitude of the spiral structures are significantly weakened.
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Figure 15: Energy history of the controlled and uncontrolled evolution of the global optimal

initial perturbation to the vortex flow at (a) m = 1, Ec = 10 and relative initial perturbation

energy l = 10−6 and (b) m = 2, Ec = 100 and l = 10−8. “lns” represents the results of

linearized evolution and “dns” denotes the nonlinear evolution obtained from DNS.
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Figure 16: (Colour online.) Contours of azimuthal vorticity in linearized evolution of pertur-

bations to the vortex flow at t = τ = 30. (a) and (b) Uncontrolled and controlled evolution

at m = 1; (c) and (d) uncontrolled and controlled evolution at m = 2. To verify the control

effects, the same contour levels are used in the controlled and uncontrolled cases.
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Figure 17: (Colour online.) Iso-surfaces of “λ2” -0.5 and -0.001 in DNS of the Batchelor

vortex flow initially perturbed by the optimal initial perturbation. (a) and (b) Uncontrolled

and controlled evolution at m = 1, Ec = 10 and l = 10−6; (c) and (d) uncontrolled and

controlled evolution at m = 2, Ec = 100 and l = 10−8.

The control effects and the relevance of the development of perturbations

to spiral vortex breakdown are further studied as revealed in figure 17. To

illustrate the structures of the vortex, we adopt iso-surfaces of the intermediate

eigenvalue of the velocity gradient tensor, “λ2” [31]. We see that without control,

the optimal initial perturbations develop into spiral arms, but under the optimal

inflow boundary control, the spiral structures are effectively suppressed.

5. Conclusion

An optimization of boundary control to minimize the energy growth of a

given perturbation in the domain is presented in order to underpin the design

of feed-back control laws, in terms of choosing the location of actuators and

predicting the maximum control effect that can be expected. The optimal initial

perturbation and its outcome are adopted as the control objective since the

optimal initial perturbation is the most energetic component of a random noise

and therefore also the target for feed-back control.
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A Lagrangian functional consisting of the controlled transient energy and a

constraint on the control cost is built. The gradient of this Lagrangian func-

tional is formulated as an explicit function of the boundary perturbation and a

conjugate gradient method is used to calculate the search direction. Owing to

the linear nature of the governing equations, an optimal step length exists and

can be calculated by an extra integration of the LNS equations. It is analyti-

cally presented that at a given control cost, a unique optimal boundary control

exists. At small enough control cost, a sensitivity solution can be obtained after

a solo integration of the adjoint equations without iterative optimisations. The

distribution of this sensitivity solution can be interpreted as the sensitivity of

perturbations in the domain on the control. As the control cost increases, this

optimal solution approaches the stablest eigenmode of a direct-adjoint operator

and tends to be grid-to-grid oscillatory, which cannot be generated by physical

actuators.

After optimizing the boundary control based on fixed values of control cost,

a controllability analysis is conducted by relaxing the constraint on control cost.

The obtained “global” optimal control reveals the magnitude and distribution

of the uncontrollable component in the objective perturbation.

It is observed that without constraint on control cost, over 95% of the tran-

sient energy growth can be suppressed and this value is relatively insensitive

to the temporal frequency of the boundary perturbations in the case study of

a stenotic flow. In the investigation of another case, the Batchelor vortex, we

observe that the spiral breakdown initialized by the helical instabilities are ef-

fectively suppressed by the inflow-normal boundary control in DNS.

acknowledgements

We would like to acknowledge financial support from the Australian Re-

search Council through Discovery Program Grant DP1094851, and from Aus-

tralia’s National Computational Infrastructure via Merit Allocation Scheme

Grant D77. SJS would like to acknowledge financial support under EPSRC

30



grant EP/H050507/1.

Appendix A. Search direction and optimal step length

In the optimization process, we adopt the (Fletcher–Reeves) conjugate gra-

dient method to calculate the search direction at step k as

P̃(∇cL)k = (∇cL)k, for k = 0;

P̃(∇cL)k = (∇cL)k +
((∇cL)k, (∇cL)k)

((∇cL)k−1, (∇cL)k−1)
P(∇cL)k−1 for k > 0.

The search direction can be decomposed into two parts, one is parallel to c and

the other is normal to c. The first part does not change the distribution of c and

can be removed. To simplify the formulation in the calculation of the optimal

step length outlined below, we use only the second part as the search direction,

P(∇cL)k = P̃(∇cL)k − [P̃(∇cL)k, ck]

[ck, ck]
ck.

The optimal step length αopt is the step length α that minimizes

E(ck+1) = [2N ∗uiτ +N ∗Nck+1, ck+1] + (uiτ ,uiτ )

where

ck+1(α) = (ck + αPk)

(
Ec

[ck + αPk, ck + αPk]

)1/2

.

Therefore E can be expressed as a function of α:

E(ck+1(α)) =
(a6 + a2α)(1 + a1α

2)1/2 + a3 + a4α+ a5α
2

1 + a1α2
+ (uiτ ,uiτ ) (A.1)

where

a1 = [P,P]/Ec, a2 = 2[N ∗uiτ ,P], a3 = (Nc,Nc),

a4 = 2(Nc,NP), a5 = (NP,NP), a6 = 2[N ∗uiτ , c].

The superscript k is omitted hereafter for clarification.

At the optimal value of α, dL/dα = 0. Through standard algebraic manip-

ulations, we obtain

c4α
4 + c3α

3 + c2α
2 + c1α+ c0 = 0, (A.2)
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where

c0 = a24 − a22, c1 = −4a1a3a4 + 4a4a5 + 2a1a2a6,

c2 = (2a1a3 − 2a5)2 − 2a1a
2
4 − a1a22 − a21a26,

c3 = 2a1(2a1a3a4 − 2a4a5 + a1a2a6), c4 = a21(a24 − a1a26).

The roots of (A.2) are the eigenvalues of a Hessenberg matrix

C =


0 0 0 −c0/c4
1 0 0 −c1/c4
0 1 0 −c2/c4
0 0 1 −c3/c4

 .

The eigenvalues of C are calculated via Schur factorization and denoted as

α1 ∼ α4. Considering −∞ is also a candidate of the optimal step length, we

set α5 = −∞. Substitute α1 ∼ α5 into (A.1) and compare the corresponding

values of E. Then the step length that produces the minimum value of E is the

optimal step length αopt.
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