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Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network

Architecture and Design—Distributed networks; G.1.6 [Numerical Analysis]: Optimization—
Constrained optimization, Convex programming, Integer programming, Nonlinear programming;
G.3 [Probability and Statistics]: Probability and Statistics—Experimental design

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Sensor network, dynamical system, distributed state estima-
tion, randomly occurring nonlinearity (RON), time delays, stability in the mean square

1. INTRODUCTION

Recent advances in network technology and sensor research have led to more and
more sensing systems which are integrated through a network. Sensor networks con-
sist of a large number of inexpensive wireless devices (nodes) densely distributed
over the region of interest [Brooks et al. 2003; Wang et al. 2009]. Sensor networks
have been widely applied in practice such as military sensing, physical security,
air traffic control, traffic surveillance, video surveillance, distributed robotics and
industrial and manufacturing automation. Though the emerging techniques for
sensor network itself have been playing an important role in the research commu-
nity, the revolution of sensor networks relies on more advances in multidisciplinary
research [Xiong et al. 2004]. One of the popular research topics for sensor networks
is the distributed filtering or estimation problem that has been attracting growing
research interests. For distributed estimation problem, the sensors are arranged in
a communication graph configuration and the measurements cannot be sent simul-
taneously or instantaneously to a base station. Each individual sensor in a sensor
network locally estimates the system state from not only its own measurement but
also its neighboring sensors’ measurements according to the given topology. Differ-
ent from the traditional central filtering techniques [Liu et al. 2004; Gao and Chen
2007; Shi et al. 2006; Wu et al. 2008; Xiong and Lam 2006; Zhang et al. 2006],
an effective distributed estimation algorithm should be capable of handling com-
plicated coupling between the sensor nodes as well as network-induced phenomena
such as random communication delays and stochastic disturbances.

Owing to their great application potential in large-scale sensor networks with
limited capabilities, the distributed estimation or filtering algorithms have gained
a great deal of research attention and a variety of distributed strategies have been
proposed. For example, in [Olfati-Saber 2007; Olfati-Saber and Shamma 2005],
three distributed Kalman filtering (DKF) algorithms have been developed that can
be applied to sensor networks with different observation matrices (sensing models)
and with different consensus strategies. In [Speranzon et al. 2008], a distributed
estimation algorithm has been proposed for sensor networks, where each node com-
putes its estimate as a weighted sum of its own and its neighbors’ measurements,
and the weights are adaptively updated to minimize the variance of the estimation
error. In [Kim et al. 2008], the multiscale approaches have been employed to accel-
erate the convergence of decentralized consensus problems, where the consecutive
consensus iterations are executed on several scales to achieve fast convergence for
networks with poor connectivity. In [Yu et al. 2009], a type of distributed consen-
sus filters has been designed based on the pinning control approach where only a
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small fraction of sensors need to measure the target information. More recently,
in [Cattivelli and Sayed 2010a; 2010b], the problem of distributed Kalman filtering
and smoothing has been investigated, where a set of nodes is required to estimate
the state of a linear dynamic system in a collaborative manner and the informa-
tion is diffused across the network through a sequence of Kalman iterations and
data-aggregation.

In reality, the sensor networks are naturally subject to network-induced complex-
ities such as stochastic disturbances, random communication delays and randomly
occurring nonlinearities. Firstly, sensor networks are often deployed in a noisy en-
vironment and it is not surprising that the stochastic modeling issue has been of
vital importance for distributed estimation problems of sensor networks. Note that
the additive white noises have been extensively studied in [Olfati-Saber 2007; Sper-
anzon et al. 2008; Yu et al. 2009; Cattivelli and Sayed 2010a] within a standard
Kalman filtering framework, but another important type of stochastic disturbances,
namely, multiplicative (Itô-type) noises that are related to the stochastic nature of
external fields or boundary conditions, have not received adequate attention [Yu
et al. 2009]. Secondly, the time-delay phenomenon in spreading information through
sensor networks (complex networks or neural networks) is well known to be ubiq-
uitous because of the limited communication capability [Cao et al. 2008; Song and
Cao 2007; Yuan et al. 2006; Liu et al. 2008], and therefore the delay effects have
been a focus in the research of sensor networks, see e.g. [Cohen and Kapchits 2009;
Bekmezci and Alagöz 2009] where the time-delay is assumed to be deterministic.
However, the signal transmission delay over sensor networks is inherently of a ran-
dom nature dependent on the network circumstances. Thirdly, as is well known, the
sensor networks are influenced by additive nonlinear disturbances that are caused by
environmental circumstances. Such nonlinear disturbances themselves may experi-
ence random abrupt changes due probably to abrupt phenomena such as random
failures and changes in node interconnections, which give rise to the so-called ran-
domly occurring nonlinearities (RONs), see [Wang et al. 2009; Wang et al. 2010]
for more explanations.

It should be pointed out that, although the distributed state estimation problem
for sensor networks has stirred considerable research attention, so far, very little
research effort has been paid to the design problem for distributed state estimators
under network-induced random phenomena including multiplicative noises, random
communication delays and RONs. The lack of the research results is mainly due to
the mathematical complexity introduced by the node coupling, random delays and
RONs. It is, therefore, the aim of this paper to shorten such a gap by launching
a study on distributed state estimation problem in sensor networks with RONs
subject to time-delays. Specifically, in this paper, we are interested in the design of
distributed estimators that can locally predict the system states, where each sensor
communicates with the neighboring sensors according to the given topology in terms
of a directed graph. By using a novel Lyapunov functional, several delay-dependent
criteria are established under which the estimation error from each sensor is globally
asymptotically stable in the mean square. A numerical example is given to verify
the designed distributed state estimators.

It is noted that the sensor networks considered in this paper possess a distinguish-
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ing feature that is fundamentally different from other kinds of networked systems
such as those studied in [Naghshtabrizi and Hespanha 2005; Yue et al. 2004], i.e.,
the topology (space) information about the sensor network is now playing a central
role. More specifically, each individual sensor needs to estimate the system state
based not only on its own measurement but also on its neighboring sensors’ mea-
surements according to certain topology. Subsequently, the addressed distributed
state estimation problem for sensor networks is fundamentally different from the
central state estimation problem for networked systems in problem formulation, es-
timator structure selection and algorithm development due mainly to the available
topology information. The main contributions of this paper are listed as follows.
1) In the plant under consideration, multiplicative (Itô-type) noises and random
communication delays exist simultaneously that render more practical significance
of our current research. 2) RONs are introduced to describe the phenomena of
nonlinear disturbances appearing in a random way. 3) Intensive stochastic analysis
is conducted to obtain easily verifiable conditions for the existence of the desired
estimators. The rest of the paper is organized as follows. In Section 2, the problem
addressed is formulated and some preliminaries are briefly outlined. In Section 3,
the main theorems and corollaries are given for the distributed state estimation
of the dynamical systems describing the sensor networks. Finally, conclusions are
drawn in Section 4.

Notations. The notations used throughout this paper are fairly standard except
where otherwise stated. R

n and R
m×n denote the n-dimensional Euclidean space

and the set of allm×n real matrices, respectively. In and 0n represent, respectively,
the identity matrix and the zero matrix of dimension n. The Kronecker product of
matrices A ∈ R

m×n and B ∈ R
p×q is a matrix in R

mp×nq and denoted as A ⊗ B.
The notation X > 0 (respectively, X ≥ 0) for X ∈ R

n×n means that matrix
X is real, symmetric and positive definite (respectively, positive semi-definite).
diag(· · · ) stands for the block-diagonal matrix and the asterisk ‘∗’ in a symmetric
matrix is used to denote the term that is induced by symmetry. col(· · · ) denotes
a matrix column with blocks given by the matrices in (· · · ). Let (Ω,F ,P) be a
complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions.
Prob{β} stands for the occurrence probability of the event β and E{α} means the
mathematical expectation of the stochastic variable α with respect to the given
probability measure P . Matrices, if not stated, are assumed to be compatible for
algebraic operations.

2. PROBLEM FORMULATION AND PRELIMINARIES

In this paper, our main aim is to estimate the state of a target using a network of
sensors. In this context, there are two models to be considered, namely, the model
describing the dynamics of the target referred to as the dynamical plant and the
model of the sensor network consisting of nodes and topology among the nodes. Let
us now start with the dynamical plant described by the following Itô-type stochastic
system with RON subject to time-delay:

ds(t) = [As(t) +Bf(t, s(t)) + δ(t)Dg(t, s(t− τ(t)))]dt +M0s(t)dω(t), (1)
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where s(t) ∈ R
n is the state vector of the plant; A, B, D and M0 are known

constant matrices; ω(t) is a scalar Brownian motion defined on (Ω,F ,P) with

E{dω(t)} = 0 and E{[dω(t)]2} = 1. (2)

f(t, s(t)) and g(t, s(t−τ(t))) are continuous nonlinear functions, and τ(t) is a known
time-varying differentiable function representing the discrete time delay which sat-
isfies

0 < τ ≤ τ(t) ≤ τ , τ̇(t) ≤ µ; (∀t ∈ R+) (3)

where τ , τ and µ are constants. Note that the time-delay has long been a focus
in systems modeling and control, see e.g. [Lu and Ho 2010; Lu et al. 2009; Meng
et al. 2009; Karimi and Gao 2010; Goodall and Postoyan 2010]. Moreover, δ(t) is
a Bernoulli distributed variable defined by

δ(t) =

{
1, if Event 1 occurs
0, if Event 2 occurs

(4)

in which Event 1 refers to the case that the dynamics of system (1) is affected
by the past state s(t − τ(t)) while, if this is not the case, Event 2 occurs. As
pointed out in [Yue et al. 2009; Gao et al. 2009; Lin et al. 2009], δ(t) is a Markovian
process. It is also assumed in this paper that the variables δ(t) and ω(t) are mutually
independent, and δ(t) follows an exponential distribution of switches with

Prob{δ(t) = 1} = E{δ(t)} = δ0, Prob{δ(t) = 0} = 1− E{δ(t)} = 1− δ0;

where δ0 (0 ≤ δ0 ≤ 1) is the known occurrence probability of the event of experienc-
ing the regulating function g(·, ·). Obviously, it follows from the above hypothesis
that

E{δ(t)− δ0} = 0 and E{(δ(t)− δ0)
2} = δ0(1 − δ0). (5)

Remark 1. In this paper, the random variable δ(t) is utilized to model the prob-
ability distribution of the nonlinear function describing the regulation effect of the
delayed states, i.e., the probability distribution of the randomly occurring nonlinear-
ity (RON) g(·, ·). The concept of RON was firstly proposed in [Wang et al. 2009;
Wang et al. 2010] to account for the binary switch between two nonlinear functions
which might reflect more realistic characteristics in complex networks.

Next, let us deal with the sensor network model. The sensor network is assumed
to have N sensors modeled by

yi(t) = Cis(t) +Wihi(t, s(t)) +Mis(t)dω(t)/dt, i = 1, 2, . . . , N (6)

where yi(t) ∈ R
m is the measurement output observed by sensor i from the plant,

Ci, Wi and Mi are known real constant matrices, and hi(t, s(t)) denotes the non-
linear deterministic disturbance on the sensor output.

Remark 2. The dynamical plant modeled according to physical laws is continuous-
time by its nature. Continuous-time sensor networks have been a focus of research
in the past decade. For example, in [Sinopoli et al. 2003], a hierarchical model
has been presented that is composed of continuous time-trigger components at the
low level and discrete event-triggered components at the high level. Recently, it has
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been confirmed in [Egea-Lopez et al. 2006] that many necessary models for sen-
sor networks are in the continuous-time domain (e.g., heat transmission, battery
discharge). On the other hand, stochastic disturbances exist universally in real-
world sensor networks. For instance, the signal transfer through wireless networks
could be perturbed randomly from the release of probabilistic causes such as neuro-
transmitters and packet dropouts. However, the stochastic noise by means of scalar
Brownian motion has not been explicitly taken into account for sensor networks
in [Sinopoli et al. 2003; Egea-Lopez et al. 2006]. Therefore, one of the objectives
of this paper is to include the Brownian motion and randomly occurring nonlin-
earities in the sensor network model so as to better reflect the engineering practice.
Moreover, when it comes to the implementation of continuous-time networks for the
sake of computer-based simulation, experimentation, computation or estimation, it
is usual to use digital signals from the sensor output to analyze/control/simulate
the continuous-time networks. In this case, only the samples of the sensor output
signals at discrete time instants are employed, which gives rise to the sampled-data
distributed filtering problem as one of the interesting topics to be investigated in the
near future. For the present research in this paper, it is assumed that a device of
digital-to-analog converter (DAC) exists to convert a digital (usually binary) code
to an analog signal (e.g. current, voltage, electric charge) and therefore the sensor
model can be regarded as continuous-time.

In this paper, let G = (ν, ε) be the directed graph of order N with nonnegative
adjacency matrix L = [lij ] that characterizes the interconnection topology of the
sensor network. More specifically, ν = {1, 2, . . . , N} represents the set of labeled
nodes; ε ⊆ ν × ν is the set of edges and each edge can be denoted by an ordered
pair of vertices (i, j) corresponding to the information transmission from sensor j
to sensor i; L = [lij ] is defined as follows: lij > 0 if (i, j) ∈ ε, lij = 0 otherwise.
Moreover, we assume lii = 1 for all i ∈ ν, and therefore (i, i) can be regarded as an
additional edge. The set of neighbors of node i ∈ ν plus the node itself are denoted
by Ni = {j ∈ ν : (i, j) ∈ ε}. Furthermore, according to the given network topology,
it is assumed that each sensor node can receive information from its neighboring
nodes in the sensor network. The aim of this paper is to estimate the states of the
plant at current times by utilizing the neighboring measurements from the sensor
network.
Construct the following state estimator on sensor node i:

dxi(t) =

[
Axi(t) +Bf(t, xi(t)) + δ0Dg(t, xi(t− τ(t)))

+
∑

j∈Ni

lijKij

(
yj(t)− Cjxj(t)−Wjhj(t, xj(t))

)

 dt (7)

where xi(t) ∈ R
n is the estimation of the state s(t) of dynamical plant based on

the node i, and Kij ∈ R
n×m is the estimator gain matrix to be designed.

Remark 3. The state estimator in the form (7) reflects the collaborative behav-
ior of the distributed estimation, that is, each individual sensor needs to estimate
the system state based not only on its own measurement but also on its neighbor-
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ing sensors’ measurements according to the given topology. Note that Ni = {j ∈
ν : (i, j) ∈ ε} denotes the set of neighbors of node i ∈ ν plus the node itself.

Throughout this paper, the following assumptions are made on the nonlinear
functions in (1) and (6).

Assumption 1. There exist matrices Λ, Σ and Γi (i = 1, 2, . . . , N) such that
the following inequalities

‖f(t, x)− f(t, y)‖ ≤ ‖Λ(x− y)‖,
‖g(t, x)− g(t, y)‖ ≤ ‖Σ(x− y)‖,

‖hi(t, x) − hi(t, y)‖ ≤ ‖Γi(x − y)‖

hold for all t ∈ R+ and x, y ∈ R
n.

Remark 4. Assumption 1 is about the Lipschitz continuity of the nonlinear
functions f , g and hi. Intuitively, the Lipschitz continuity guarantees that these
nonlinear functions are limited in how fast they can change, i.e., for every pair of
points on the graph of the functions, their tangent line-segment’s slope has absolute-
value no greater than a definite real number. In other words, these nonlinear func-
tions cannot be too steep. With such a Lipschitz continuity assumption on the
network parameters, we would be able to deduce the asymptotic stability of the equi-
librium point of the error dynamics for the distributed estimation problem, and
therefore guarantee the convergence of the state estimation algorithm. Note that
the nonlinearities satisfying the Lipschitz conditions are encountered in many en-
gineering systems such as systems with multiplicative noises, systems with nonlin-
earity dependent on the norm of states, systems with nonlinearity dependent on
the absolute value of states, and systems with nonlinearity dependent on the sign
of a nonlinear function of states. For example, for the localization problem of Un-
manned Aerial Vehicles (UAVs) [Shen et al. 2011] with their movement in a beeline
only, the dynamic model of a UAV is usually a nonlinear system containing some
monomials satisfying the Lipschitz continuity constraints.

Assumption 2. For all t ∈ R+, the following equalities hold:

f(t, 0) = 0, g(t, 0) = 0, hi(t, 0) = 0.

Remark 5. Assumption 2 is concerned with the existence of the zero equilibrium,
which is for the convenience of mathematical analysis. It is known that the existence
and uniqueness of the equilibrium for the overall estimation error dynamics can
be guaranteed by the Lipschitz continuity of the nonlinear functions f , g and hi.
Assumption 2 further ensures that such equilibrium is zero, which would facilitate
the stability analysis later on. The asymptotic stability of the zero equilibrium means
that the state estimation error from each sensor asymptotically tends to zero, thereby
guaranteeing the convergence of the proposed distributed filtering algorithm.
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By letting ei(t) = s(t)− xi(t), it follows from (1), (6) and (7) that

dei(t) =

[
Aei(t) +Bf̃(t, ei(t)) + δ0Dg̃(t, ei(t− τ(t)))

+(δ(t)− δ0)Dg(t, s(t− τ(t))) −
∑

j∈Ni

lijKij

(
Cjej(t) +Wj h̃j(t, ej(t))

)

 dt

+
(
M0 −

∑

j∈Ni

lijKijMj

)
s(t)dω(t), (8)

where i = 1, 2, . . . , N ; f̃(t, ei(t)) = f(t, s(t))−f(t, xi(t)), g̃(t, ei(t−τ(t))) = g(t, s(t−
τ(t))) − g(t, xi(t− τ(t))) and for all j ∈ Ni, h̃j(t, ej(t)) = hj(t, s(t))− hj(t, xj(t)).
Denoting e(t) = col(e1(t), e2(t), . . . , eN(t)), then the estimation error dynamics

for the sensor network can be rewritten in a compact form as

de(t) = [(IN ⊗A)e(t) + (IN ⊗B)F (t, e(t)) + δ0(IN ⊗D)G(t, e(t− τ(t)))

+ (δ(t)− δ0)D̃g(t, s(t− τ(t))) − K̄C̃e(t)− K̄W̃H(t, e(t))
]
dt

+(M̃0 − K̄M̃)s(t)dω(t)

=
[
(IN ⊗A− K̄C̃)e(t) + (IN ⊗B)F (t, e(t)) − K̄W̃H(t, e(t))

+ δ0(IN ⊗D)G(t, e(t− τ(t))) + (δ(t) − δ0)D̃g(t, s(t− τ(t)))
]
dt

+(M̃0 − K̄M̃)s(t)dω(t), (9)

where

D̃ = col(D,D, . . . , D), C̃ = diag(C1, C2, . . . , CN ),

W̃ = diag(W1,W2, . . . ,WN ), M̃0 = col(M0,M0, . . . ,M0),

M̃ = col(M1,M2, . . . ,MN), F (t, e(t)) =




f̃(t, e1(t))

f̃(t, e2(t))
...

f̃(t, eN (t))


 ,

H(t, e(t)) =




h̃1(t, e1(t))

h̃2(t, e2(t))
...

h̃N (t, eN (t))


 , G(t, e(t− τ(t))) =




g̃(t, e1(t− τ(t)))
g̃(t, e2(t− τ(t)))

...
g̃(t, eN (t− τ(t)))


 ,

and K̄ = (lijKij)N×N is a sparse matrix satisfying K̄ ∈ Wn×m, where Wn×m is
defined as

Wn×m =
{
Ū = [Uij ] ∈ R

nN×mN |Uij ∈ R
n×m, Uij = 0 if j /∈ Ni

}
. (10)

In terms of Assumption 1, one can easily obtain

‖F (t, e(t))‖ ≤ ‖Λ̃e(t)‖, ‖H(t, e(t))‖ ≤ ‖Γ̃e(t)‖,
‖G(t, e(t− τ(t)))‖ ≤ ‖Σ̃e(t− τ(t))‖

(11)
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where Λ̃ = diag(Λ,Λ, . . . ,Λ), Σ̃ = diag(Σ,Σ, . . . ,Σ) and Γ̃ = diag(Γ1,Γ2, . . . ,ΓN ).
Letting η(t) = [sT (t), eT (t)]T , the combination of (1) and (9) yields the following

augmented system

dη(t) = [Aη(t) + BF (t, η(t)) + δ0D1G(t, η(t− τ(t)))

+(δ(t)− δ0)D2G(t, η(t − τ(t)))]dt +Mη(t)dω(t)

= [Y(t) + (δ(t)− δ0)D2G(t, η(t− τ(t)))]dt +Mη(t)dω(t), (12)

where A = diag(A, IN ⊗A− K̄C̃), D1 = diag(D, IN ⊗D),

B =

[
B 0 0

0 IN ⊗B −K̄W̃

]
, D2 =

[
D 0

D̃ 0

]
, M =

[
M0 0

M̃0 − K̄M̃ 0

]
,

F (t, η(t)) =




f(t, s(t))
F (t, e(t))
H(t, e(t))


 , G(t, η(t − τ(t))) =

[
g(t, s(t− τ(t)))
G(t, e(t− τ(t)))

]
.

The initial condition associated with (12) is given as

η(θ) = ϕ(θ), θ ∈ [−τ , 0] (13)

where

ϕ(·) ∈ L2
F0
([−τ , 0],R(N+1)n)

and L2
F0

([−τ, 0],R(N+1)n) is the family of all F0-measurable C([−τ , 0],R(N+1)n)-
valued random variables satisfying sup−τ≤θ≤0 E{‖ϕ(θ)‖2} < ∞, and the corre-
sponding solution of (12) is denoted as η(t;ϕ).
Before stating the problem addressed in this paper, the following stability concept

for the stochastic system (12) is introduced.

Definition 1. For all i = 1, 2, . . . , N , the system (7) is said to be a globally
asymptotic state estimator on sensor node i of the dynamical system (1) if the zero
solution of the augmented system (12) is globally asymptotically stable in the mean
square, i.e.,

lim
t→∞

E{||η(t;ϕ)||2} = 0

holds for all ϕ(·) ∈ L2
F0

([−τ, 0],R(N+1)n).

The purpose of the distributed state estimation problem is to seek estimator gain
matrices Kij ∈ R

n×m (i = 1, 2, . . . , N, j ∈ Ni) such that the zero solution of the
augmented system (12) is globally asymptotically stable in the mean square.

3. MAIN RESULTS

Some lemmas are introduced before giving the main results.

Lemma 1. Let x ∈ R
n, y ∈ R

n and matrix Q > 0. Then the inequality 2xT y ≤
xTQx+ yTQ−1y holds.

Lemma 2. [Boyd et al. 1994] The following linear matrix inequality
[

Q(x) S(x)
ST (x) R(x)

]
> 0,
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where Q(x) = QT (x), R(x) = RT (x) and S(x) depend affinely on x, is equivalent
to one of the following conditions:
(i) R(x) > 0, Q(x)− S(x)R−1(x)ST (x) > 0;
(ii) Q(x) > 0, R(x)− ST (x)Q−1(x)S(x) > 0.

Now, we start to analyze the distributed state estimation problem for the aug-
mented system (12). For this purpose, we have from Assumptions 1-2 that

‖F (t, η(t))‖ ≤ ‖Λ̂η(t)‖, ‖G(t, η(t− τ(t)))‖ ≤ ‖Σ̂η(t− τ(t))‖; (14)

where

Λ̂ =



Λ 0

0 Λ̃

0 Γ̃


 , Σ̂ =

[
Σ 0

0 Σ̃

]

and Λ̃, Σ̃, Γ̃ are defined in (11).
Obviously, it follows from (14) that for any positive scalars ǫ1 and ǫ2, the following

two inequalities hold:

ǫ1η
T (t)Λ̂T Λ̂η(t)− ǫ1F

T (t, η(t))F (t, η(t)) ≥ 0; (15)

and

ǫ2η
T (t− τ(t))Σ̂T Σ̂η(t− τ(t)) − ǫ2GT (t, η(t− τ(t)))G(t, η(t − τ(t))) ≥ 0. (16)

Theorem 1. Under Assumptions 1-2, for the given K̄, the network in (12) with
time-varying delays is globally asymptotically stable in the mean square if there exist
matrices P > 0, Q ≥ 0, R ≥ 0, S > 0, Z > 0, matrices Tj (j = 1, 2, 3, 4) and
scalars ǫ1 > 0, ǫ2 > 0 such that

[
Ξ Υ
∗ −S

]
< 0, (17)

where Υ = [ℵ1 ℵ1 ℵ2 ℵ2 ℵ3 ℵ3], S = diag(S,Z,S,Z,S,Z),

Ξ =




Ξ11 TT
1 0 0 PB δ0PD1 ATTT

4

∗ −Q−T1 −TT
1 TT

2 0 0 0 0
∗ ∗ Ξ33 TT

3 0 0 0
∗ ∗ ∗ −T3 −TT

3 0 0 0
∗ ∗ ∗ ∗ −ǫ1I 0 BTTT

4

∗ ∗ ∗ ∗ ∗ Ξ66 δ0DT
1 T

T
4

∗ ∗ ∗ ∗ ∗ ∗ τS−T4 −TT
4




,

ℵ1 = [0
√
τTT

1 0 0 0 0 0]T , ℵ2 = [0 0
√
τ − τTT

2 0 0 0 0]T ,

ℵ3 = [0 0 0
√
τ − τTT

3 0 0 0]T , Ξ66 = τδ0(1− δ0)DT
2 ZD2 − ǫ2I,

Ξ11 = PA+ATP+MTPM +Q+R+ ǫ1Λ̂
T Λ̂,

Ξ33 = −(1− µ)R−T2 −TT
2 + ǫ2Σ̂

T Σ̂.

Proof. See Appendix 1.

Remark 6. In Theorem 1, the Lyapunov-Krasovskii functional approach is em-
ployed to establish delay-dependent criterion that ensures the network in (12) with

ACM Transactions on Sensor Networks, Vol. X, No. X, XX 20XX.



Distributed State Estimation in Sensor Networks · 11

time-varying delays to be globally asymptotically stable in the mean square, in other
words, the distributed estimator exists. The criterion is expressed in terms of the
solution to certain linear matrix inequalities (LMIs) that can be effectively solved
and checked by the algorithms such as the interior-point method in the Matlab Tool-
box. Note that the proposed Lyapunov-Krasovskii functional (25) is novel that caters
the “energy” involving the time-delay, the lower bound of the time-delay, the upper
bound of the time-delay, as well as the mathematical expectation of the stochastic
variable. The existence of the decision variables (P > 0, Q ≥ 0, R ≥ 0, S > 0,
Z > 0) in (17) implies the existence of the Lyapunov-Krasovskii functional (25),
where these decision variables do have their physical meaning. For example, the
positive definite matrix P > 0 is associated with the energy of the network state
and Q ≥ 0 is related to the energy of the network state on the delayed interval. If
(17) holds, the derivative of the Lyapunov-Krasovskii functional along the network
trajectory is less than zero. This means the total energy of the whole network mono-
tonically decreases when time goes, which in turn implies the asymptotic stability
of the network.

To derive the design scheme for state estimator parameters, we still need to
introduce the following lemma whose proof is straightforward and therefore omitted
here.

Lemma 3. Let P = diag(P11,P22, . . . ,PNN) with Pii ∈ R
n×n (i = 1, 2, . . . , N)

being invertible matrices. If X = PŪ for Ū ∈ R
nN×mN , then we have Ū ∈ Wn×m ⇔

X ∈ Wn×m.

Based on Lemma 3, we can obtain the following theorem which shows that the
distributed state estimation problem can be solved if the solution of a matrix in-
equality exists.

Theorem 2. Under Assumptions 1-2, the system (7) is a globally asymptotic
state estimator on sensor node i (i = 1, 2, . . . , N) of the dynamical system (1) if
there exist matrices Pkk > 0 (k = 1, 2, . . . , N + 1), Q ≥ 0, R ≥ 0, S > 0, Z > 0,
matrices T41, T43, Tj (j = 1, 2, 3), X ∈ Wn×m and scalars ǫ1 > 0, ǫ2 > 0 such that

[
Π Υ̂

∗ −Ŝ

]
< 0, (18)

where Υ̂ = [ℵ1 ℵ1 ℵ2 ℵ2 ℵ3 ℵ3 ℵ4], Ŝ = diag(S,Z,S,Z,S,Z,P22), P22 =
diag(P22, P33, . . . , PN+1,N+1),

ℵ4 =




Π1,10

0
0
0
0
0
0




,Π =




Π11 TT
1 0 0 Π15 δ0Π16 Π17

∗ −Q−T1 −TT
1 TT

2 0 0 0 0
∗ ∗ Ξ33 TT

3 0 0 0
∗ ∗ ∗ −T3 −TT

3 0 0 0
∗ ∗ ∗ ∗ −ǫ1I 0 Π57

∗ ∗ ∗ ∗ ∗ Ξ66 δ0Π67

∗ ∗ ∗ ∗ ∗ ∗ τS−Π77




,

ℵ1, ℵ2, ℵ3, Ξ33 and Ξ66 are the same as those defined in Theorem 1, Π11 = Π′
11 +

Q+R+ ǫ1Λ̂
T Λ̂ and Π′

11 = diag(P11A+ATP11 +MT
0 P11M0,P22(IN ⊗A) + (IN ⊗
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12 · Jinling Liang et al.

AT )P22 −XC̃ − C̃TXT ),

Π15 =

[
P11B 0 0

0 P22(IN ⊗B) −XW̃

]
, Π16 =

[
P11D 0
0 P22(IN ⊗D)

]
,

Π17 =

[
ATT T

41 ATT T
43

0 (IN ⊗AT )P22 − C̃TXT

]
, Π1,10 =

[
M̃T

0 P22 − M̃TXT

0

]
,

Π57 =



BTT T

41 BTT T
43

0 (IN ⊗BT )P22

0 −W̃TXT


 , Π67 =

[
DTT T

41 DTT T
43

0 (IN ⊗DT )P22

]
,

Π77 =

[
T41 + T T

41 T T
43

T43 2P22

]
.

Moreover,

K̄ = P−1
22 X ; (19)

accordingly, parameters Kij (i = 1, 2, . . . , N, j ∈ Ni) can be derived from (10).

Proof. See Appendix 2.

Remark 7. In Theorem 1, by taking advantage of the stochastic analysis and the
free-weighting matrix technique, the feasibility of the distributed state estimation
problem is investigated and several sufficient criteria are derived in the form of
matrix inequalities. These sufficient criteria ensure that the desired distributed
estimator exists. Based on the results in Theorem 1, the explicit expression of the
estimator gains is further derived in Theorem 2 which shows that the distributed
state estimation problem can be solved if the solution of a matrix inequality exists.
Note that restricting attention to diagonal Lyapunov matrices in order to use matrix
inequalities for synthesizing the decentralized control law is well known [Zečević and
Šiljak 2004]. Furthermore, such inequalities can be easily computed and effectively
checked in practice by resorting to the Matlab Control Toolbox.

In the following, two special cases are considered.
Case 1. When there is no RON in the dynamical plant, then equation (1) reduces

to

ds(t) = [As(t) +Bf(t, s(t))]dt+M0s(t)dω(t). (20)

By taking the same full-order distributed state estimator (7) with δ0 = 0, along the
similar proof lines of Theorem 2, one has the following result immediately.

Corollary 1. Under Assumptions 1-2, the system (7) with δ0 = 0 is a globally
asymptotic state estimator on sensor node i (i = 1, 2, . . . , N) of the dynamical
system (20) if there exist matrices Pkk > 0 (k = 1, 2, . . . , N+1), matrix X ∈ Wn×m

and a scalar ǫ > 0 such that


Π′

11 + ǫΛ̂T Λ̂ Π15 Π1,10

∗ −ǫI 0
∗ ∗ −P22


 < 0, (21)
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where Π′
11, Π15 and Π1,10 are the same as defined in Theorem 2. Moreover, K̄ =

P−1
22 X; accordingly, parameters Kij (i = 1, 2, . . . , N, j ∈ Ni) can be derived from

(10).

Case 2. When the time-delay in the dynamical system (1) is time-invariant, i.e.,
τ(t) ≡ τ , it turns into the following equation:

ds(t) = [As(t) +Bf(t, s(t)) + δ(t)Dg(t, s(t− τ))]dt +M0s(t)dω(t). (22)

With the similar proof as for Theorem 2, we easily obtain the following corollary.

Corollary 2. Under Assumptions 1-2, the system (7) with τ(t) ≡ τ is a glob-
ally asymptotic state estimator on sensor node i (i = 1, 2, . . . , N) of the dynamical
system (22) if there exist matrices Pkk > 0 (k = 1, 2, . . . , N + 1), Q ≥ 0, S > 0,
Z > 0, matrices T41, T43, T, X ∈ Wn×m and scalars ǫ1 > 0, ǫ2 > 0 such that




Π̌11 TT Π15 δ0Π16 Π17 0 0 Π1,10

∗ Ξ̌22 0 0 0
√
τT

√
τT 0

∗ ∗ −ǫ1I 0 Π57 0 0 0
∗ ∗ ∗ Ξ̌66 δ0Π67 0 0 0
∗ ∗ ∗ ∗ τS−Π77 0 0 0
∗ ∗ ∗ ∗ ∗ −S 0 0
∗ ∗ ∗ ∗ ∗ ∗ −Z 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −P22




< 0, (23)

where Π̌11 = Π′
11+Q+ǫ1Λ̂

T Λ̂, Ξ̌22 = −Q−T−TT , Ξ̌66 = τδ0(1−δ0)DT
2 ZD2−ǫ2I

and the other symbols are the same as defined in Theorem 2. Moreover, K̄ = P−1
22 X;

accordingly, parameters Kij (i = 1, 2, . . . , N, j ∈ Ni) can be derived from (10).

Remark 8. In Refs. [Mou et al. 2008; Mou et al. 2008; Wang et al. 2008],
delay fractioning method was utilized to analyze the stability/synchronization for
neural/complex networks. The advantage of such method lies in that it fractional-
izes the time-delay to arbitrary uniform parts to reduce the conservatism by intro-
ducing more matrix variables. Here, one may also employ this technique to reduce
the conservatism of the results obtained in Theorem 2. Also, the idea of diffusion
strategies of [Cattivelli and Sayed 2009; 2008; Cattivelli et al. 2008; Cattivelli and
Sayed 2010a] is to deal with the distributed Kalman filtering and smoothing where
a set of nodes is required to estimate the state of a linear dynamic system in a
collaborative manner and the information is diffused across the network through a
sequence of Kalman iterations and data-aggregation. The diffusion strategies apply
mainly to discrete-time case for facilitating the Kalman iterations. Nevertheless, it
would be indeed interesting to investigate the possibility of using diffusion strategies
and global cost function in the sampled-data distributed filtering problem we are
currently looking into.

Remark 9. Apart from the novelty in the proposed model and addressed research
problem, we would also like to take this opportunity to list the essential technical
difficulties we have encountered in our research as comparing to the literature on
networked estimation problem. 1) The Brownian motion appears in both the dy-
namical plant and the sensors, and this makes the whole system a set of Itô-type
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stochastic differential equations. The corresponding analysis would have to be car-
ried out by extensive use of the Itô differential role (see (30)), which is non-trivial.
2) Randomly occurring nonlinearities (RONs) and time-delays are introduced to de-
scribe the phenomena of nonlinear disturbances and delays appearing in a random
way. It is quite subtle to choose the structure of the distributed estimator since
the randomly variables should not be present in the estimator and the traditional
Luenberger-type estimator is no longer valid. In this paper, we have included the
mathematical expectations of the stochastic variables in the estimator structure (see
(7)), which brings significant difficulties in ensuring the unbiasedness of the esti-
mation errors. 3) Due to the possibly large size of the sensor networks, the overall
error dynamics is governed by a system of dimension n×N , where n is the dimen-
sion of the dynamical plant and N is the number of sensors. To cope with such
an analysis problem of large dimension, we have chosen to use Kronecker prod-
uct to describe the system in a more compact form. Nevertheless, calculation over
Kronecker product demands extreme care and some special inequalities would need
to be developed to handle the time-delays appearing in the Kronecker product. 4)
The proposed Lyapunov-Krasovskii functional (25) is novel that caters the “energy”
involving the time-delay, the lower bound of the time-delay, the upper bound of the
time-delay, as well as the mathematical expectation of the stochastic variable. The
selection of such a Lyapunov-Krasovskii functional would largely reduce the conser-
vatism brought from the time-delay at the expense of complicating the derivation.
Though we don’t regard this as one of our main contributions, as far as we know,
the proposed Lyapunov-Krasovskii functional is new and comprehensive that renders
the derivation of our main results non-trivial.

4. CONCLUSIONS

In this paper, the distributed state estimation problem has been investigated on the
sensor network for the dynamical plant system. Both the plant system and each
sensor network system are disturbed by external noises described by Brownian
motions. Furthermore, RON has been introduced in the dynamical plant to reflect
the random effect of the delayed states on the current ones. By using the Lyapunov
functional method combing with the stochastic analysis technique, several sufficient
criteria have been derived to ensure the state estimation error system to be globally
asymptotically stable in the mean square, i.e., the distributed state estimators can
be designed to estimate the states of the dynamical plant in a distributed way by
utilizing the sensor network output measurements.

Appendix 1: Proof of Theorem 1

Lemma 2 ensures that inequality (17) is equivalent to Ξ′ < 0, where

Ξ′ =




Ξ11 TT
1 0 0 PB δ0PD1 ATTT

4

∗ Ξ′
22 TT

2 0 0 0 0
∗ ∗ Ξ′

33 TT
3 0 0 0

∗ ∗ ∗ Ξ′
44 0 0 0

∗ ∗ ∗ ∗ −ǫ1I 0 BTTT
4

∗ ∗ ∗ ∗ ∗ Ξ66 δ0DT
1 T

T
4

∗ ∗ ∗ ∗ ∗ ∗ τS−T4 −TT
4




(24)
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and

Ξ′
22 = −Q−T1 −TT

1 + τT1(S
−1 + Z−1)TT

1 ,

Ξ′
33 = Ξ33 + (τ − τ )T2(S

−1 + Z−1)TT
2 ,

Ξ′
44 = −T3 −TT

3 + (τ − τ )T3(S
−1 + Z−1)TT

3 .

Consider the Lyapunov-Krasovskii functional candidate as follows:

V (t, ηt) = V1(t, ηt) + V2(t, ηt) + V3(t, ηt) + V4(t, ηt) + V5(t, ηt), (25)

where ηt = η(t+ θ), θ ∈ [−τ , 0] and

V1(t, ηt) = ηT (t)Pη(t), V2(t, ηt) =

∫ t

t−τ

ηT (θ)Qη(θ)dθ, (26)

V3(t, ηt) =

∫ t

t−τ(t)

ηT (θ)Rη(θ)dθ, V4(t, ηt) =

∫ t

t−τ

dv

∫ t

v

YT (θ)SY(θ)dθ, (27)

V5(t, ηt) = δ0(1− δ0)

∫ t

t−τ

dv

∫ t

v

GT (θ, η(θ − τ(θ)))DT
2 ZD2G(θ, η(θ − τ(θ)))dθ, (28)

in which P > 0, Q ≥ 0, R ≥ 0, S > 0 and Z > 0 are matrices to be determined.

From Itô formula [Mao et al. 1998; Mao 1997], one obtains the following stochastic
differential:

dV (t, ηt) = L V (t, ηt)dt+ Vη(t, ηt)Mη(t)dω(t), (29)

where L is the infinitesimal operator of V (t, ηt) computed as follows:

L V (t, ηt) = Vt(t, ηt) + Vη(t, ηt)[Y(t) + (δ(t)− δ0)D2G(t, η(t− τ(t)))]

+
1

2
ηT (t)MTVηη(t, ηt)Mη(t). (30)

Here, Vt(t, ηt) is the first-order derivative of the real-value function V (t, ηt) with
respect to t, Vη(t, ηt) and Vηη(t, ηt) are, respectively, the first- and second-order
derivatives of V (t, ηt) with respect to the vector η ∈ R

(N+1)n.
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It follows from (25)–(30) that

L V1(t, ηt) = 2ηT (t)PY(t) + 2(δ(t)− δ0)η
T (t)PD2G(t, η(t− τ(t)))

+ηT (t)MTPMη(t)

= 2ηT (t)P[Aη(t) + BF (t, η(t)) + δ0D1G(t, η(t− τ(t)))]

+2(δ(t)− δ0)η
T (t)PD2G(t, η(t − τ(t))) + ηT (t)MTPMη(t)

= ηT (t)[PA +ATP+MTPM]η(t) + 2ηT (t)PBF (t, η(t))

+2δ0η
T (t)PD1G(t, η(t− τ(t)))

+2(δ(t)− δ0)η
T (t)PD2G(t, η(t − τ(t))), (31)

L V2(t, ηt) = ηT (t)Qη(t) − ηT (t− τ )Qη(t− τ), (32)

L V3(t, ηt) = ηT (t)Rη(t) − (1− τ̇ (t))ηT (t− τ(t))Rη(t − τ(t))

≤ ηT (t)Rη(t) − (1− µ)ηT (t− τ(t))Rη(t − τ(t)), (33)

L V4(t, ηt) = τYT (t)SY(t) −
(∫ t−τ(t)

t−τ

+

∫ t−τ

t−τ(t)

+

∫ t

t−τ

)
YT (θ)SY(θ)dθ, (34)

L V5(t, ηt) = τδ0(1− δ0)GT (t, η(t− τ(t)))DT
2 ZD2G(t, η(t− τ(t)))

−δ0(1 − δ0)
(∫ t−τ(t)

t−τ

+

∫ t−τ

t−τ(t)

+

∫ t

t−τ

)
GT (θ, η(θ − τ(θ)))

×DT
2 ZD2G(θ, η(θ − τ(θ)))dθ. (35)

For any matrices Tj (j = 1, 2, 3, 4) with appropriate dimensions, it follows from
the definition of Y(t) that

2ηT (t− τ )T1[η(t)− η(t− τ )−
∫ t

t−τ

dη(θ)] = 0, (36)

2ηT (t− τ(t))T2 [η(t− τ)− η(t− τ(t)) −
∫ t−τ

t−τ(t)

dη(θ)] = 0, (37)

2ηT (t− τ )T3[η(t− τ(t)) − η(t− τ )−
∫ t−τ(t)

t−τ

dη(θ)] = 0, (38)

2YT (t)T4[Aη(t) + BF (t, η(t)) + δ0D1G(t, η(t − τ(t))) − Y(t)] = 0. (39)

By resorting to Lemma 1, we have

−2ηT (t− τ)T1

∫ t

t−τ

dη(θ)

= −2ηT (t− τ)T1

∫ t

t−τ

Y(θ)dθ − 2ηT (t− τ)T1

×
∫ t

t−τ

(δ(θ) − δ0)D2G(θ, η(θ − τ(θ)))dθ − 2ηT (t− τ)T1

∫ t

t−τ

Mη(θ)dω(θ)
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≤ τηT (t− τ )T1(S
−1 + Z−1)TT

1 η(t− τ ) +

∫ t

t−τ

YT (θ)SY(θ)dθ

+

∫ t

t−τ

(δ(θ) − δ0)
2GT (θ, η(θ − τ(θ)))DT

2 ZD2G(θ, η(θ − τ(θ)))dθ

−2ηT (t− τ)T1

∫ t

t−τ

Mη(θ)dω(θ), (40)

Similarly, one has

−2ηT (t− τ(t))T2

∫ t−τ

t−τ(t)

dη(θ)

≤ (τ(t) − τ )ηT (t− τ(t))T2(S
−1 + Z−1)TT

2 η(t− τ(t))

+

∫ t−τ

t−τ(t)

(δ(θ)− δ0)
2GT (θ, η(θ − τ(θ)))DT

2 ZD2G(θ, η(θ − τ(θ)))dθ

+

∫ t−τ

t−τ(t)

YT (θ)SY(θ)dθ

−2ηT (t− τ(t))T2

∫ t−τ

t−τ(t)

Mη(θ)dω(θ), (41)

and

−2ηT (t− τ)T3

∫ t−τ(t)

t−τ

dη(θ)

≤ (τ − τ(t))ηT (t− τ)T3(S
−1 + Z−1)TT

3 η(t− τ)

+

∫ t−τ(t)

t−τ

(δ(θ) − δ0)
2GT (θ, η(θ − τ(θ)))DT

2 ZD2G(θ, η(θ − τ(θ)))dθ

+

∫ t−τ(t)

t−τ

YT (θ)SY(θ)dθ − 2ηT (t− τ)T3

∫ t−τ(t)

t−τ

Mη(θ)dω(θ). (42)

Observing the facts τ(t) − τ ≤ τ − τ and τ − τ(t) ≤ τ − τ , and combining with
(15), (16) and (31)–(42), we can obtain that

E{L V (t, ηt)} ≤ E{ξT (t)Ξ′ξ(t)}, (43)

where

ξ(t) = [ηT (t), ηT (t−τ ), ηT (t−τ(t)), ηT (t−τ ),FT (t, η(t)),GT (t, η(t−τ(t))),YT (t)]T

and Ξ′ is defined in (24). This indicates from the Lyapunov stability theory [Schuss
1980] that the dynamics of the augmented system (12) is globally asymptotically
stable in the mean square. The proof is complete.

Appendix 2: Proof of Theorem 2

Noticing that matrix K̄ contains all the desired state estimator parameters, inspired
by the structure of A, we choose P = diag(P11,P22), where P11 ∈ R

n×n and
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P22 ∈ R
Nn×Nn are positive definite matrices. By simple computation, we have

MTPM =

[
MT

0 P11M0 + (M̃0 − K̄M̃)TP22(M̃0 − K̄M̃) 0
0 0

]
, (44)

PA =

[
P11A 0

0 P22(IN ⊗A)−P22K̄C̃

]
,

PB =

[
P11B 0 0

0 P22(IN ⊗B) −P22K̄W̃

]
. (45)

Again, by observing the terms of matrix Ξ in (17) and supposing

T4 =

[
T41 T42

T43 T44

]
,

where T41 ∈ R
n×n and T44 ∈ R

Nn×Nn, we have

T4A =

[
T41A T42(IN ⊗A− K̄C̃)

T43A T44(IN ⊗A− K̄C̃)

]
.

Obviously, to solve the problem under study more easily, one just need to take
T42 = 0 and T44 = P22, which leads to the fact that

T4A =

[
T41A 0

T43A P22(IN ⊗A− K̄C̃)

]
,

T4B =

[
T41B 0 0

T43B P22(IN ⊗B) −P22K̄W̃

]
.

(46)

From (44)–(46) and the expression of Ξ in (17), it can be seen that one needs to
take X = P22K̄ to make the condition in (17) convex. Based on Lemma 3 and the
analysis above, with the constraint X ∈ Wn×m for matrix X , one can easily obtain
the result of this theorem. The proof is completed.
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