15 research outputs found

    The miR-15/107 Group of MicroRNA Genes: Evolutionary Biology, Cellular Functions, and Roles in Human Diseases

    Get PDF
    The miR-15/107 group of microRNA (miRNA) gene is increasingly appreciated to serve key functions in humans. These miRNAs regulate gene expression involved in cell division, metabolism, stress response, and angiogenesis in vertebrate species. The miR-15/107 group has also been implicated in human cancers, cardiovascular disease and neurodegenerative disease, including Alzheimer\u27s disease. Here we provide an overview of the following: (1) the evolution of miR-15/107 group member genes; (2) the expression levels of miRNAs in mammalian tissues; (3) evidence for overlapping gene-regulatory functions by different miRNAs; (4) the normal biochemical pathways regulated by miR-15/107 group miRNAs; and (5) the roles played by these miRNAs in human diseases. Membership in this group is defined based on sequence similarity near the mature miRNAs\u27 5\u27 end: all include the sequence AGCAGC. Phylogeny of this group of miRNAs is incomplete; thus, a definitive taxonomic classification (e.g., designation as a superfamily ) is currently not possible. While all vertebrates studied to date express miR-15a, miR-15b, miR-16, miR-103, and miR-107, mammals alone are known to express miR-195, miR-424, miR-497, miR-503, and miR-646. Multiple different miRNAs in the miR-15/107 group are expressed at moderate to high levels in human tissues. We present data on the expression of all known miR-15/107 group members in human cerebral cortical gray matter and white matter using new miRNA profiling microarrays. There is extensive overlap in the mRNAs targeted by miR-15/107 group members. We show new data from cultured H4 cancer cells that demonstrate similarities in mRNAs targeted by miR-16 and miR-103 and also support the importance of the mature miRNAs\u27 5\u27 seed region in mRNA target recognition. In conclusion, the miR-15/107 group of miRNA genes is a fascinating topic of study for evolutionary biologists, miRNA biochemists, and clinically oriented translational researchers alike

    Identification and Characterization of \u3cem\u3eOGG1\u3c/em\u3e Mutations in Patients with Alzheimer\u27s Disease

    Get PDF
    Patients with Alzheimer\u27s disease (AD) exhibit higher levels of 8-oxo-guanine (8-oxoG) DNA lesions in their brain, suggesting a reduced or defective 8-oxoG repair. To test this hypothesis, this study investigated 14 AD patients and 10 age-matched controls for mutations of the major 8-oxoG removal gene OGG1. Whereas no alterations were detected in any control samples, four AD patients exhibited mutations in OGG1, two carried a common single base (C796) deletion that alters the carboxyl terminal sequence of OGG1, and the other two had nucleotide alterations leading to single amino acid substitutions. In vitro biochemical assays revealed that the protein encoded by the C796-deleted OGG1 completely lost its 8-oxoG glycosylase activity, and that the two single residue-substituted OGG1 proteins showed a significant reduction in the glycosylase activity. These results were consistent with the fact that nuclear extracts derived from a limited number of AD patients with OGG1 mutations exhibited greatly reduced 8-oxoG glycosylase activity compared with age-matched controls and AD patients without OGG1 alterations. Our findings suggest that defects in OGG1 may be important in the pathogenesis of AD in a significant fraction of AD patients and provide new insight into the molecular basis for the disease

    Specific sequence determinants of miR-15/107 microRNA gene group targets

    Get PDF
    MicroRNAs (miRNAs) target mRNAs in human cells via complex mechanisms that are still incompletely understood. Using anti-Argonaute (anti-AGO) antibody co-immunoprecipitation, followed by microarray analyses and downstream bioinformatics, ā€˜RIP-Chipā€™ experiments enable direct analyses of miRNA targets. RIP-Chip studies (and parallel assessments of total input mRNA) were performed in cultured H4 cells after transfection with miRNAs corresponding to the miR-15/107 gene group (miR-103, miR-107, miR-16 and miR-195), and five control miRNAs. Three biological replicates were run for each condition with a total of 54 separate human Affymetrix Human Gene 1.0 ST array replicates. Computational analyses queried for determinants of miRNA:mRNA binding. The analyses support four major findings: (i) RIP-Chip studies correlated with total input mRNA profiling provides more comprehensive information than using either RIP-Chip or total mRNA profiling alone after miRNA transfections; (ii) new data confirm that miR-107 paralogs target coding sequence (CDS) of mRNA; (iii) biochemical and computational studies indicate that the 3ā€² portion of miRNAs plays a role in guiding miR-103/7 to the CDS of targets; and (iv) there are major sequence-specific targeting differences between miRNAs in terms of CDS versus 3ā€²-untranslated region targeting, and stable AGO association versus mRNA knockdown. Future studies should take this important miRNA-to-miRNA variability into account

    The Histone Mark H3K36me3 Regulates Human DNA Mismatch Repair through Its Interaction with MutSĪ±

    Get PDF
    SummaryDNA mismatch repair (MMR) ensures replication fidelity by correcting mismatches generated during DNA replication. Although human MMR has been reconstituted inĀ vitro, how MMR occurs inĀ vivo is unknown. Here, we show that an epigenetic histone mark, H3K36me3, is required inĀ vivo to recruit the mismatch recognition protein hMutSĪ± (hMSH2-hMSH6) onto chromatin through direct interactions with the hMSH6 PWWP domain. The abundance of H3K36me3 in G1 and early S phases ensures that hMutSĪ± is enriched on chromatin before mispairs are introduced during DNA replication. Cells lacking the H3K36 trimethyltransferase SETD2 display microsatellite instability (MSI) and an elevated spontaneous mutation frequency, characteristic of MMR-deficient cells. This work reveals that a histone mark regulates MMR in human cells and explains the long-standing puzzle of MSI-positive cancer cells that lack detectable mutations in known MMR genes

    Preferential loss of mismatch repair function in refractory and relapsed acute myeloid leukemia: potential contribution to AML progression

    No full text
    Acute myeloid leukemia (AML) is an aggressive hematological cancer. Despite therapeutic regimens that lead to complete remission, the vast majority of patients undergo relapse. The molecular mechanisms underlying AML development and relapse remain incompletely defined. To explore whether loss of DNA mismatch repair (MMR) function is involved in AML, we screened two key MMR genes, MSH2 and MLH1, for mutations and promoter hypermethylation in leukemia specimens from 53 AML patients and blood from 17 non-cancer controls. We show here that whereas. no amino acid alteration or promoter hypermethylation was detected in all control samples, 18 AML patients exhibited either mutations in MMR genes or hypermethylation in the MLH1 promoter. In vitro functional MMR analysis revealed that almost all the mutations analyzed resulted in loss of MMR function. MMR defects were significantly more frequent in patients with refractory or relapsed AML compared with newly diagnosed patients. These observations suggest for the first time that the loss of MMR function is associated with refractory and relapsed AML and may contribute to disease pathogenesis

    Rad5 and Its Human Homologs, HLTF and SHPRH, Are Novel Interactors of Mismatch Repair.

    No full text
    DNA mismatch repair (MMR) repairs replication errors, and MMR defects play a role in both inherited cancer predisposition syndromes and in sporadic cancers. MMR also recognizes mispairs caused by environmental and chemotherapeutic agents; however, in these cases mispair recognition leads to apoptosis and not repair. Although mutation avoidance by MMR is fairly well understood, MMR-associated proteins are still being identified. We performed a bioinformatic analysis that implicated Saccharomyces cerevisiae Rad5 as a candidate for interacting with the MMR proteins Msh2 and Mlh1. Rad5 is a DNA helicase and E3 ubiquitin ligase involved in post-replicative repair and damage tolerance. We confirmed both interactions and found that the Mlh1 interaction is mediated by a conserved Mlh1-interacting motif (MIP box). Despite this, we did not find a clear role for Rad5 in the canonical MMR mutation avoidance pathway. The interaction of Rad5 with Msh2 and Mlh1 is conserved in humans, although each of the Rad5 human homologs, HLTF and SHPRH, shared only one of the interactions: HLTF interacts with MSH2, and SHPRH interacts with MLH1. Moreover, depletion of SHPRH, but not HLTF, results in a mild increase in resistance to alkylating agents although not as strong as loss of MMR, suggesting gene duplication led to specialization of the MMR-protein associated roles of the human Rad5 homologs. These results provide insights into how MMR accessory factors involved in the MMR-dependent apoptotic response interact with the core MMR machinery and have important health implications into how human cells respond to environmental toxins, tumor development, and treatment choices of tumors with defects in Rad5 homologs

    The 8-oxoG glycosylase activity of nuclear extracts derived from brain of AD patients

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Identification and characterization of mutations in patients with Alzheimer's disease"</p><p></p><p>Nucleic Acids Research 2007;35(8):2759-2766.</p><p>Published online 10 Apr 2007</p><p>PMCID:PMC1885677.</p><p>Ā© 2007 The Author(s)</p> Nuclear extracts (40ā€‰Ī¼g) from AD patients (AD1, AD2 and AD3) or age-matched controls (C1, C2 and C3) were incubated with 50ā€‰fmol of P-labeled 36-mer duplex containing a centrally located 8-oxoG residue. 8-oxoG cleavage activity in AD patients, except AD1, was lower than that in age-matched controls
    corecore