24,165 research outputs found
Sketch-based virtual human modelling and animation
Animated virtual humans created by skilled artists play a remarkable role in todayâs public entertainment. However, ordinary users are still treated as audiences due to the lack of appropriate expertise, equipment, and computer skills. We developed a new method and a novel sketching interface, which enable anyone who can draw to âsketch-outâ 3D virtual humans and animation.
We devised a âStick FigureFleshing-outSkin Mappingâ graphical pipeline, which decomposes the complexity of figure drawing and considerably boosts the modelling and animation efficiency. We developed a gesture-based method for 3D pose reconstruction from 2D stick figure drawings. We investigated a âCreative Model-based Methodâ, which performs a human perception process to transfer usersâ 2D freehand sketches into 3D human bodies of various body sizes, shapes and fat distributions. Our current system supports character animation in various forms including articulated figure animation, 3D mesh model animation, and 2D contour/NPR animation with personalised drawing styles. Moreover, this interface also supports sketch-based crowd animation and 2D storyboarding of 3D multiple character interactions. A preliminary user study was conducted to support the overall system design. Our system has been formally tested by various users on Tablet PC. After minimal training, even a beginner can create vivid virtual humans and animate them within minutes
Sketching-out virtual humans: From 2d storyboarding to immediate 3d character animation
Virtual beings are playing a remarkable role in todayâs public entertainment, while ordinary users are still treated as audiences due to the lack of appropriate expertise, equipment, and computer skills. In this paper, we present a fast and intuitive storyboarding interface, which enables users to sketch-out 3D virtual humans, 2D/3D animations, and character intercommunication. We devised an intuitive âstick figurefleshing-outskin mappingâ graphical animation pipeline, which realises the whole process of key framing, 3D pose reconstruction, virtual human modelling, motion path/timing control, and the final animation synthesis by almost pure 2D sketching. A âcreative model-based methodâ is developed, which emulates a human perception process, to generate the 3D human bodies of variational sizes, shapes, and fat distributions. Meanwhile, our current system also supports the sketch-based crowd animation and the storyboarding of the 3D multiple character intercommunication. This system has been formally tested by various users on Tablet PC. After minimal training, even a beginner can create vivid virtual humans and animate them within minutes
Sketching-out virtual humans: A smart interface for human modelling and animation
In this paper, we present a fast and intuitive interface for sketching out
3D virtual humans and animation. The user draws stick figure key frames first and
chooses one for âfleshing-outâ with freehand body contours. The system
automatically constructs a plausible 3D skin surface from the rendered figure, and
maps it onto the posed stick figures to produce the 3D character animation. A
âcreative model-based methodâ is developed, which performs a human perception
process to generate 3D human bodies of various body sizes, shapes and fat
distributions. In this approach, an anatomical 3D generic model has been created with
three distinct layers: skeleton, fat tissue, and skin. It can be transformed sequentially
through rigid morphing, fatness morphing, and surface fitting to match the original
2D sketch. An auto-beautification function is also offered to regularise the 3D
asymmetrical bodies from usersâ imperfect figure sketches. Our current system
delivers character animation in various forms, including articulated figure animation,
3D mesh model animation, 2D contour figure animation, and even 2D NPR animation
with personalised drawing styles. The system has been formally tested by various
users on Tablet PC. After minimal training, even a beginner can create vivid virtual
humans and animate them within minutes
Criticality and isostaticity in fiber networks
The rigidity of elastic networks depends sensitively on their internal
connectivity and the nature of the interactions between constituents. Particles
interacting via central forces undergo a zero-temperature rigidity-percolation
transition near the isostatic threshold, where the constraints and internal
degrees of freedom are equal in number. Fibrous networks, such as those that
form the cellular cytoskeleton, become rigid at a lower threshold due to
additional bending constraints. However, the degree to which bending governs
network mechanics remains a subject of considerable debate. We study disordered
fibrous networks with variable coordination number, both above and below the
central-force isostatic point. This point controls a broad crossover from
stretching- to bending-dominated elasticity. Strikingly, this crossover
exhibits an anomalous power-law dependence of the shear modulus on both
stretching and bending rigidities. At the central-force isostatic point---well
above the rigidity threshold---we find divergent strain fluctuations together
with a divergent correlation length , implying a breakdown of continuum
elasticity in this simple mechanical system on length scales less than .Comment: 6 pages, 5 figure
Antenna Miniaturization Based on Supperscattering Effect
Antennas are essential components of all existing radio equipments. The miniaturization of antenna is a key issue of antenna technology. Based on supperscattering effect, we found that when a small horn antenna is located inside of a dielectric core and covered with a complementary layer, its far field radiation pattern will be equivalent to a large horn antenna. The complementary layer with only axial parameters varying with radius is obtained using coordinate transformation theory. Besides, the influence of loss and perturbations of parameters on supperscattering effect is also investigated. Results show that the device is robust against the perturbation in the axial material parameters when the refractive index is kept invariant. Full-wave simulations based on finite element method are performed to validate the design
Neutron spin polarization in strong magnetic fields
The effects of strong magnetic fields on the inner crust of neutron stars are
investigated after taking into account the anomalous magnetic moments of
nucleons. Energy spectra and wave functions for protons and neutrons in a
uniform magnetic field are provided. The particle spin polarizations and the
yields of protons and neutrons are calculated in a free Fermi gas model.
Obvious spin polarization occurs when G for protons and
G for neutrons, respectively. It is shown that the neutron spin
polarization depends solely on the magnetic field strength.Comment: Replaced by the revised version; 10 pages, including 3 eps figure
Discrete Razumikhin-type technique and stability of the Euler-Maruyama method to stochastic functional differential equations
A discrete stochastic Razumikhin-type theorem is established to investigate whether the Euler--Maruyama (EM) scheme can reproduce the moment exponential stability of exact solutions of stochastic functional differential equations (SFDEs). In addition, the Chebyshev inequality and the Borel-Cantelli lemma are applied to show the almost sure stability of the EM approximate solutions of SFDEs. To show our idea clearly, these results are used to discuss stability of numerical solutions of two classes of special SFDEs, including stochastic delay differential equations (SDDEs) with variable delay and stochastically perturbed equations
Constraining f(R) Gravity as a Scalar Tensor Theory
We search for viable f(R) theories of gravity, making use of the equivalence
between such theories and scalar-tensor gravity. We find that models can be
made consistent with solar system constraints either by giving the scalar a
high mass or by exploiting the so-called chameleon effect. However, in both
cases, it appears likely that any late-time cosmic acceleration will be
observationally indistinguishable from acceleration caused by a cosmological
constant. We also explore further observational constraints from, e.g., big
bang nucleosynthesis and inflation.Comment: 15 pages, 5 figure
A 1.3 cm Line Survey toward Orion KL
Orion KL has served as a benchmark for spectral line searches throughout the
(sub)millimeter regime. The main goal is to systematically study spectral
characteristics of Orion KL in the 1.3 cm band. We carried out a spectral line
survey (17.9 GHz to 26.2 GHz) with the Effelsberg-100 m telescope towards Orion
KL. We find 261 spectral lines, yielding an average line density of about 32
spectral features per GHz above 3. The identified lines include 164
radio recombination lines (RRLs) and 97 molecular lines. A total of 23
molecular transitions from species known to exist in Orion KL are detected for
the first time in the interstellar medium. Non-metastable 15NH3 transitions are
detected in Orion KL for the first time. Based on the velocity information of
detected lines and the ALMA images, the spatial origins of molecular emission
are constrained and discussed. A narrow feature is found in SO2
(), possibly suggesting the presence of a maser line. Column
densities and fractional abundances relative to H2 are estimated for 12
molecules with LTE methods. Rotational diagrams of non-metastable 14NH3
transitions with J=K+1 to J=K+4 yield different results; metastable 15NH3 is
found to have a higher excitation temperature than non-metastable 15NH3,
indicating that they may trace different regions. Elemental and isotopic
abundance ratios are estimated: 12C/13C=63+-17, 14N/15N=100+-51,
D/H=0.0083+-0.0045. The dispersion of the He/H ratios derived from
H/He pairs to H/He pairs is very small, which
is consistent with theoretical predictions that the departure coefficients bn
factors for hydrogen and helium are nearly identical. Based on a non-LTE code
neglecting excitation by the infrared radiation field and a likelihood
analysis, we find that the denser regions have lower kinetic temperature, which
favors an external heating of the Hot Core.Comment: 70 pages, 26 figures, 12 tables, accepted for publication in A&A.
Figs. 1, 2, 8, 9 have been downsize
Large collective Lamb shift of two distant superconducting artificial atoms
Virtual photons can mediate interaction between atoms, resulting in an energy
shift known as a collective Lamb shift. Observing the collective Lamb shift is
challenging, since it can be obscured by radiative decay and direct atom-atom
interactions. Here, we place two superconducting qubits in a transmission line
terminated by a mirror, which suppresses decay. We measure a collective Lamb
shift reaching 0.8% of the qubit transition frequency and exceeding the
transition linewidth. We also show that the qubits can interact via the
transmission line even if one of them does not decay into it.Comment: 7+5 pages, 4+2 figure
- âŠ