10 research outputs found

    Ruin Theory for Dynamic Spectrum Allocation in LTE-U Networks

    Full text link
    LTE in the unlicensed band (LTE-U) is a promising solution to overcome the scarcity of the wireless spectrum. However, to reap the benefits of LTE-U, it is essential to maintain its effective coexistence with WiFi systems. Such a coexistence, hence, constitutes a major challenge for LTE-U deployment. In this paper, the problem of unlicensed spectrum sharing among WiFi and LTE-U system is studied. In particular, a fair time sharing model based on \emph{ruin theory} is proposed to share redundant spectral resources from the unlicensed band with LTE-U without jeopardizing the performance of the WiFi system. Fairness among both WiFi and LTE-U is maintained by applying the concept of the probability of ruin. In particular, the probability of ruin is used to perform efficient duty-cycle allocation in LTE-U, so as to provide fairness to the WiFi system and maintain certain WiFi performance. Simulation results show that the proposed ruin-based algorithm provides better fairness to the WiFi system as compared to equal duty-cycle sharing among WiFi and LTE-U.Comment: Accepted in IEEE Communications Letters (09-Dec 2018

    Ruin Theory for User Association and Energy Optimization in Multi-access Edge Computing

    Full text link
    In this letter, a novel framework is proposed for analyzing data offloading in a multi-access edge computing system. Specifically, a two-phase algorithm, is proposed, including two key phases: \emph{1) user association phase} and \emph{2) task offloading phase}. In the first phase, a ruin theory-based approach is developed to obtain the users association considering the users' transmission reliability. Meanwhile, in the second phase, an optimization-based algorithm is used to optimize the data offloading process. In particular, ruin theory is used to manage the user association phase, and a ruin probability-based preference profile is considered to control the priority of proposing users. Here, ruin probability is derived by the surplus buffer space of each edge node at each time slot. Giving the association results, an optimization problem is formulated to optimize the amount of offloaded data aiming at minimizing the energy consumption of users. Simulation results show that the developed solutions guarantee system reliability under a tolerable value of surplus buffer size and minimize the total energy consumption of all users.Comment: This paper has been submitted to IEEE Wireless Communications Letter

    A contract theory-based incentive mechanism for UAV-enabled VR-based services in 5G and beyond

    Get PDF
    The proliferation of novel infotainment services such as Virtual Reality(VR)-based services has fundamentally changed the existing mobile networks. These bandwidth-hungry services expanded at a tremendously rapid pace, thus, generating a burden of data traffic in the mobile networks. To cope with this issue, one can use Multi-access Edge Computing (MEC) to bring the resource to the edge. By doing so, we can release the burden of the core network by taking the communication, computation, and caching resources nearby the end-users (UEs). Nevertheless, due to the vast adoption of VR-enabled devices, MEC resources might be insufficient in peak times or dense settings. To overcome these challenges, we propose a system model where the service provider (SP) might rent Unmanned Area Vehicles (UAVs) from UAV service providers (USPs) to serve as micro-based stations (UBSs) that expand the service area and improve the spectrum efficiency. In which, UAV can pre-cached certain sets of VR-based contents and serve UEs via air-to-ground (A2G) communication. Furthermore, future intelligent devices are capable of 5G and B5G communication interfaces, and thus, they can communicate with UAVs via A2G links. By doing so, we can significantly reduce a considerable amount of data traffic in mobile networks. In order to successfully enable such kinds of services, an attractive incentive mechanism is required. Therefore, we propose a contract theory-based incentive mechanism for UAV-assisted MEC in VR-based infotainment services, in which the MEC offers an amount reward to a UAV for serving as a UBS in a specific location for certain time slots. We then derive an optimal contract-based scheme with individual rationality and incentive compatibility conditions. The numerical findings show that our proposed approach outperforms the Linear Pricing (LP) technique and is close to the optimal solution in terms of social welfare. Additionally, our proposed scheme significantly enhanced the fairness of utility for UAVs in asymmetric information problems

    Joint communication, computation, and control for computational task offloading in vehicle-assisted multi-access edge computing

    Get PDF
    Future generation of Electric Vehicles (EVs) equipped with modern technologies will impose a significant burden on computation and communication to the network due to the vast extension of onboard infotainment services. To overcome this challenge, multi-access edge computing (MEC) or Fog Computing can be employed. However, the massive adoption of novel infotainment services such as Augmented Reality, Virtual Reality-based services will make the MEC and Fog resources insufficient. To cope with this issue, we propose a system model with onboard computation offloading, where an EV can utilize its neighboring EVs resources that are not resource-constrained to enhance its computing capacity. Then, we propose to solve the problem of computational task offloading by jointly considering the communication, computation, and control in a mobile vehicular network. We formulate a mixed-integer non-linear problem (MINLP) to minimize the trade-off between latency and energy consumption subject to the network resources and the mobility of EVs. The formulated problem is solved via the block coordination descent (BCD) method. In such a way, we decompose the original MINLP problem into three subproblems which are resource block allocation (RBA), power control and interference management (PCP), and offload decision problem (ODP). We then alternatively obtain solutions of RBA and PCP via the duality theory, and the third sub-problem is solvable via the relaxation method and alternating direction Lagrangian multiplier method (ADMM). Numerical results reveal that the proposed solution BCD-based algorithm performs a fast convergence rate

    Contract-based scheduling of URLLC packets in incumbent Embb traffic

    No full text
    Recently, the coexistence of ultra-reliable and low-latency communication (URLLC) and enhanced mobile broadband (eMBB) services on the same licensed spectrum has gained a lot of attention from both academia and industry. However, the coexistence of these services is not trivial due to the diverse multiple access protocols, contrasting frame distributions in the existing network, and the distinct quality of service requirements posed by these services. Therefore, such coexistence drives towards a challenging resource scheduling problem. To address this problem, in this paper, we first investigate the possibilities of scheduling URLLC packets in incumbent eMBB traffic. In this regard, we formulate an optimization problem for coexistence by dynamically adopting a superposition or puncturing scheme. In particular, the aim is to provide spectrum access to the URLLC users while reducing the intervention on incumbent eMBB users. Next, we apply the one-to-one matching game to find stable URLLC-eMBB pairs that can coexist on the same spectrum. Then, we apply the contract theory framework to design contracts for URLLC users to adopt the superposition scheme. Simulation results reveal that the proposed contract-based scheduling scheme achieves up to 63% of the eMBB rate for the "No URLLC" case compared to the "Puncturing" scheme.Comment: Submitted to IEEE Acces

    Coordinated device-to-device communication with non-orthogonal multiple access in future wireless cellular networks

    No full text
    We study the problem of user clustering and power assignment for a network comprised of cellular users and underlay device to device (D2D) users operating under a non-orthogonal multiple access (NOMA) scheme. Our goal is to maximize the sum-rate of the network by jointly optimizing the user clustering and power assignment. Moreover, we also aim to provide interference protection for the cellular users. The formulated optimization problem is a mixed-integer non-convex problem. Thus, the original problem is decomposed into two subproblems. The first subproblem of user clustering is formulated as a matching game with externalities, where this matching game is solved sequentially while the second subproblem pertaining to power assignment is solved using complementary Geometric programming. Finally, an efficient joint iterative algorithm is proposed that can achieve a suboptimal solution for the mix integer non-convex NP-hard problem. Simulation results show that the proposed algorithm can achieve up to 70% and 92% of performance gains in terms of the average sum-rate in comparison with the general NOMA and traditional OFDMA schemes, respectively. Moreover, our results show that the proposed scheme significantly enhances the network connectivity in terms of the number of admitted users compared to the traditional OFDMA, NOMA and D2D schemes.Published versio

    Ruin Theory for Dynamic Spectrum Allocation in LTE-U Networks

    No full text

    A Novel Contract Theory-Based Incentive Mechanism for Cooperative Task-Offloading in Electrical Vehicular Networks

    Get PDF
    The proliferation of compute-intensive services in next-generation vehicular networks will impose an unprecedented computation demand to meet stringent latency and resource requirements. Vehicular edge or fog computing has been a widely adopted solution to enhance the computational capacity of vehicular networks; however, the computation requirements of these compute hungry applications will surpass the capabilities of such a solution. To address this challenge, the on-board resources of neighboring mobile vehicles can be utilized. However, such resource utilization requires an incentive mechanism to motivate privately owned neighboring vehicles to participate in sharing their resources. In this paper, we propose a contract theory-based incentive mechanism that maximizes the social welfare of the vehicular networks by motivating neighboring vehicles to participate in sharing their resources. The proposed approach enables the Road Side Units (RSUs) to provide appropriate rewards by offering a tailored contract to each resource sharing vehicle based on their contribution and unique characteristics. Moreover, we derive an optimal contract scheme for computational task offloading, taking into account the individual rationality and incentive-compatible constraints. Finally, we perform numerical evaluations to demonstrate the effectiveness of our proposed scheme. The proposed scheme achieves up to 28% higher computing resource utilization, 17.2% lower energy consumption per computing resource utilization, and 17.1% lesser energy consumption per task completed when compared to the linear pricing incentive baseline

    A crowdsourcing framework for on-device federated learning

    No full text
    Abstract Federated learning (FL) rests on the notion of training a global model in a decentralized manner. Under this setting, mobile devices perform computations on their local data before uploading the required updates to improve the global model. However, when the participating clients implement an uncoordinated computation strategy, the difficulty is to handle the communication efficiency (i.e., the number of communications per iteration) while exchanging the model parameters during aggregation. Therefore, a key challenge in FL is how users participate to build a high-quality global model with communication efficiency. We tackle this issue by formulating a utility maximization problem, and propose a novel crowdsourcing framework to leverage FL that considers the communication efficiency during parameters exchange. First, we show an incentive-based interaction between the crowdsourcing platform and the participating client’s independent strategies for training a global learning model, where each side maximizes its own benefit. We formulate a two-stage Stackelberg game to analyze such scenario and find the game’s equilibria. Second, we formalize an admission control scheme for participating clients to ensure a level of local accuracy. Simulated results demonstrate the efficacy of our proposed solution with up to 22% gain in the offered reward
    corecore