1,583 research outputs found

    Alkaline fuel cell performance investigation

    Get PDF
    An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more that two times the surface areas of reference cathodes and therefore offered the best potential for improved performance

    Reactions of iron and nickel alloy droplets with gases

    Get PDF
    Imperial Users onl

    Asymptotically exponential hitting times and metastability: a pathwise approach without reversibility

    Get PDF
    We study the hitting times of Markov processes to target set GG, starting from a reference configuration x0x_0 or its basin of attraction. The configuration x0x_0 can correspond to the bottom of a (meta)stable well, while the target GG could be either a set of saddle (exit) points of the well, or a set of further (meta)stable configurations. Three types of results are reported: (1) A general theory is developed, based on the path-wise approach to metastability, which has three important attributes. First, it is general in that it does not assume reversibility of the process, does not focus only on hitting times to rare events and does not assume a particular starting measure. Second, it relies only on the natural hypothesis that the mean hitting time to GG is asymptotically longer than the mean recurrence time to x0x_0 or GG. Third, despite its mathematical simplicity, the approach yields precise and explicit bounds on the corrections to exponentiality. (2) We compare and relate different metastability conditions proposed in the literature so to eliminate potential sources of confusion. This is specially relevant for evolutions of infinite-volume systems, whose treatment depends on whether and how relevant parameters (temperature, fields) are adjusted. (3) We introduce the notion of early asymptotic exponential behavior to control time scales asymptotically smaller than the mean-time scale. This control is particularly relevant for systems with unbounded state space where nucleations leading to exit from metastability can happen anywhere in the volume. We provide natural sufficient conditions on recurrence times for this early exponentiality to hold and show that it leads to estimations of probability density functions

    Application of Neurochemical Markers for Assessing Health Effects after Developmental Methylmercury and PCB Coexposure

    Get PDF
    Cholinergic muscarinic receptors (MRs) and monoamine oxidase activity (MAO-B), expressed both in brain and blood cells, were investigated in animals and exposed subjects to assess (i) MeHg (0.5–1 mg/kg/day GD7-PD7) and/or PCB153 (20 mg/kg/day GD10–GD16) effects on cerebellar MAO-B and MRs, and lymphocyte MRs, in dams and offspring 21 days postpartum; (ii) MAO-B in platelets and MRs in lymphocytes of a Faroese 7-year-old children cohort, prenatally exposed to MeHg/PCBs. Animal Data. MAO-B was altered in male cerebellum by MeHg, PCB153, and their combination (35%, 45%, and 25% decrease, resp.). Cerebellar MRs were enhanced by MeHg alone in dams (87%) and male pups (27%). PCB153 alone and in mixture did not modify cerebellar MRs. Similarly to brain, lymphocyte MRs were enhanced in both dams and offspring by MeHg alone. All changes were caused by 1 MeHg mg/kg/day, the lower dose was ineffective. Human Data. Both biomarkers showed homogeneous distributions within the cohort (MRs, range 0.1–36.78 fmol/million cells; MAO-B, 0.95–14.95 nmol/mg protein/h). No correlation was found between the two biomarkers and neurotoxicant concentrations in blood (pre- and postnatally)

    Annual Survey of Virginia Law: Administrative Procedure

    Get PDF
    In 1989, the Virginia General Assembly made several relatively minor, but significant, changes to the Virginia Administrative Process Act (VAPA). These amendments modified the manner in which agencies may promulgate regulations and conduct informal fact finding hearings. Two new exemptions to the VAPA were created: one for rules for the conduct of specific lottery games; and a second for orders condemning shellfish growing areas. In other changes, rulemaking proceedings conducted by the State Water Control Board (SWCB), certain decisions of the Board of Social Services, and amendments to standards for asbestos inspections became subject to different provisions of the VAPA

    The effect of compression on individual pressure vessel nickel/hydrogen components

    Get PDF
    Compression tests were performed on representative Individual Pressure Vessel (IPV) Nickel/Hydrogen cell components in an effort to better understand the effects of force on component compression and the interactions of components under compression. It appears that the separator is the most easily compressed of all of the stack components. It will typically partially compress before any of the other components begin to compress. The compression characteristics of the cell components in assembly differed considerably from what would be predicted based on individual compression characteristics. Component interactions played a significant role in the stack response to compression. The results of the compression tests were factored into the design and selection of Belleville washers added to the cell stack to accommodate nickel electrode expansion while keeping the pressure on the stack within a reasonable range of the original preset

    Asymptotically exponential hitting times and metastability:A pathwise approach without reversibility

    Get PDF
    We study the hitting times of Markov processes to target set G, starting from a reference configuration x0 or its basin of attraction and we discuss its relation to metastability. Three types of results are reported: (1) A general theory is developed, based on the path-wise approach to metastability, which is general in that it does not assume reversibility of the process, does not focus only on hitting times to rare events and does not assume a particular starting measure. We consider only the natural hypothesis that the mean hitting time to G is asymptotically longer than the mean recurrence time to the refernce configuration x0 or G. Despite its mathematical simplicity, the approach yields precise and explicit bounds on the corrections to exponentiality. (2) We compare and relate different metastability conditions proposed in the literature. This is specially relevant for evolutions of infinite-volume systems. (3) We introduce the notion of early asymptotic exponential behavior to control time scales asymptotically smaller than the mean-time scale. This control is particularly relevant for systems with unbounded state space where nucleations leading to exit from metastability can happen anywhere in the volume. We provide natural sufficient conditions on recurrence times for this early exponentiality to hold and show that it leads to estimations of probability density functions.</p

    Sum of exit times in series of metastable states in probabilistic cellular automata

    Get PDF
    Reversible Probabilistic Cellular Automata are a special class of automata whose stationary behavior is described by Gibbs--like measures. For those models the dynamics can be trapped for a very long time in states which are very different from the ones typical of stationarity. This phenomenon can be recasted in the framework of metastability theory which is typical of Statistical Mechanics. In this paper we consider a model presenting two not degenerate in energy metastable states which form a series, in the sense that, when the dynamics is started at one of them, before reaching stationarity, the system must necessarily visit the second one. We discuss a rule for combining the exit times from each of the metastable states

    Metastability for reversible probabilistic cellular automata with self--interaction

    Get PDF
    The problem of metastability for a stochastic dynamics with a parallel updating rule is addressed in the Freidlin--Wentzel regime, namely, finite volume, small magnetic field, and small temperature. The model is characterized by the existence of many fixed points and cyclic pairs of the zero temperature dynamics, in which the system can be trapped in its way to the stable phase. %The characterization of the metastable behavior %of a system in the context of parallel dynamics is a very difficult task, %since all the jumps in the configuration space are allowed. Our strategy is based on recent powerful approaches, not needing a complete description of the fixed points of the dynamics, but relying on few model dependent results. We compute the exit time, in the sense of logarithmic equivalence, and characterize the critical droplet that is necessarily visited by the system during its excursion from the metastable to the stable state. We need to supply two model dependent inputs: (1) the communication energy, that is the minimal energy barrier that the system must overcome to reach the stable state starting from the metastable one; (2) a recurrence property stating that for any configuration different from the metastable state there exists a path, starting from such a configuration and reaching a lower energy state, such that its maximal energy is lower than the communication energy
    corecore