2,664 research outputs found

    Small scale bipolar nickel-hydrogen testing

    Get PDF
    Bipolar nickel-hydrogen batteries, ranging in capacity from 6 to 40 A-hr, have been tested at the NASA Lewis Research Center over the past six years. Small scale tests of 1 A-hr nickel-hydrogen stacks have been initiated as a means of screening design and component variations for bipolar nickel-hydrogen cells and batteries. Four small-scale batteries have been built and tested. Characterization and limited cycle testing were performed to establish the validity of test results in the scaled down hardware. The results show characterization test results to be valid. LEO test results in the small scale hardware have limited value

    Qualification testing of secondary sterilizable silver-zinc cells for use in the Jupiter atmospheric entry probe

    Get PDF
    A series of qualification tests were run on the secondary, sterilizable silver oxide - zinc cell developed at the NASA Lewis Research Center to determine if the cell was capable of providing mission power requirements for the Jupiter atmospheric entry probe. The cells were tested for their ability to survive radiation at the levels predicted for the Jovian atmosphere with no loss of performance. Cell performance was evaluated under various temperature and loading conditions, and the cells were tested under various environmental conditions related to launch and to deceleration into the Jovian atmosphere. The cell performed acceptably except under the required loading at low temperatures. The cell was redesigned to improve low-temperature performance and energy density. The modified cells improved performance at all temperatures. Results of testing cells of both the original and modified designs are discussed

    Development and evaluation of polyvinyl-alcohol blend polymer films as battery separators

    Get PDF
    Several dialdehydes and epoxies were evaluated for their suitability as cross-linkers. Optium concentrations of several cross-linking reagents were determined. A two-step method of cross-linking, which involves treatment of the film in an acid or acid periodate bath, was investigated and dropped in favor of a one-step method in which the acid catalyst, which initiates cross-linking, is added to the PVA - cross-linker solution before casting. The cross-linking was thus achieved during the drying step. This one-step method was much more adaptable to commercial processing. Cross-linked films were characterized as alkaline battery separators. Films were prepared in the lab and tested in cells in order to evaluate the effect of film composition and a number of processing parameters on cell performance. These tests were conducted in order to provide a broader data base from which to select optimum processing parameters. Results of the separator screening tests and the cell tests are discussed

    NASA Aerospace Flight Battery Systems Program: An Update

    Get PDF
    The major objective of the NASA Aerospace Flight Battery Systems Program is to provide NASA with the policy and posture to increase and ensure the safety, performance, and reliability of batteries for space power systems. The program was initiated in 1985 to address battery problems experienced by NASA and other space battery users over the previous ten years. The original program plan was approved in May 1986 and modified in 1990 to reflect changes in the agency's approach to battery related problems that are affecting flight programs. The NASA Battery Workshop is supported by the NASA Aerospace Flight Battery Systems Program. The main objective of the discussions is to aid in defining the direction which the agency should head with respect to aerospace battery issues. Presently, primary attention in the Battery Program is being devoted to issues revolving around the future availability of nickel-cadmium batteries as a result of the proposed OSHA standards with respect to allowable cadmium levels in the workplace. The decision of whether or not to pursue the development of an advanced nickel-cadmium cell design and the qualification of vendors to produce cells for flight programs hinges on the impact of the OSHA ruling. As part of a unified Battery Program, the evaluation of a nickel-hydrogen cell design options and primary cell issues are also being pursued to provide high performance NASA Standards and space qualified state-of-the-art cells. The resolution of issues is being addressed with the full participation of the aerospace battery community

    Nickel-hydrogen capacity loss on storage

    Get PDF
    Nickel-hydrogen batteries are rapidly becoming accepted for use in low-earth-orbit and geosynchronous orbit applications. With their increased use it has become evident that the storage procedures commonly used for nickel-cadmium cells are not adequate for the nickel-hydrogen system. The capacity loss exhibited by nickel electrodes from various manufacturers when exposed to different storage conditions was determined. A comprehensive test matrix was developed to evaluate capacity loss in nickel electrodes from four different manufacturers. Two types of tests were run; individual electrode tests, which involved flooded capacity and impedance measurements before and after storage under varied conditions of temperature, hydrogen pressure, and electrolyte concentration; and cell tests which primarily evaluated the effects of state-of-charge on storage. The cell tests evaluated capacity loss on cells stored open circuit, shorted and trickle charged at C/100 following a full charge. The results indicate that capacity loss varies with the specific electrode manufacturing process, storage temperature and hydrogen pressure. In general, electrodes stored at low temperatures or low hydrogen pressures exhibited a smaller loss in capacity over the twenty-eight day storage period than those stored at high pressure and high temperature. The capacity loss appears to correlate with the level of cobalt in the nickel electrode, with the most significant loss of capacity occurring in electrodes with higher cobalt levels. Impedance measurements appear to correlate well with the capacity loss observed for a given type of electrode but do not correlate well with the capacity loss between electrodes fabricated by different manufacturers. There was a definite correlation between the electrode potential measured immediately following storage and the measured capacity loss

    A 37.5-kW point design comparison of the nickel-cadmium battery, bipolar nickel-hydrogen battery, and regenerative hydrogen-oxygen fuel cell energy storage subsystems for low Earth orbit

    Get PDF
    Nickel-cadmium batteries, bipolar nickel-hydrogen batteries, and regenerative fuel cell storage subsystems were evaluated for use as the storage subsystem in a 37.5 kW power system for space station. Design requirements were set in order to establish a common baseline for comparison purposes. The storage subsystems were compared on the basis of effective energy density, round trip electrical efficiency, total subsystem weight and volume, and life

    Alkaline fuel cell performance investigation

    Get PDF
    An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more that two times the surface areas of reference cathodes and therefore offered the best potential for improved performance

    NASA aerospace flight battery systems program

    Get PDF
    The major objective of the NASA Aerospace Flight Battery Systems Program is to provide NASA with the policy and posture to increase and ensure the safety, performance and reliability of batteries for space power systems. The program plan has been modified in the past year to reflect changes in the agency's approach to battery related problems that are affecting flight programs. Primary attention in the Battery Program is being devoted to the development of an advanced nickel-cadmium cell design and the qualification of vendors to produce cells for flight programs. As part of a unified Battery Program, the development of a nickel-hydrogen standard and primary cell issues are also being pursued to provide high performance NASA Standards and space qualified state-of-the-art primary cells. The resolution of issues is being addressed with the full participation of the aerospace battery community

    Control of volume resistivity in inorganic organic separators

    Get PDF
    Control of resistivity in NASA inorganic-organic separators is achieved by incorporating small percentages of high surface area, fine particle silica with other ingredients in the separator coating. The volume resistivity is predictable from the surface area of filler particles in the coating. The approach is applied to two polymer- plasticizer -filler coating systems, where the filler content of each is below the generally acknowledged critical pigment volume concentration of the coating. Application of these coating systems to 0.0254 cm thick (10-mil) fuel cell grade asbestos sheet produces inexpensive, flexible, microporous separators that perform as well as the original inorganic-organic concept, the Astropower separator

    Separator development and testing of nickel-hydrogen cells

    Get PDF
    The components, design, and operating characteristics of Ni-H2 cells batteries were improved. A separator development program was designed to develop a separator that is resistant to penetration by oxygen and loose active material from then nickel electrode, while retraining the required chemical and thermal stability, reservoir capability, and high ionic conductivity. The performance of the separators in terms of cell operating voltage was to at least match that of state-of-the-art separators while eliminating the separator problems. The separators were submitted to initial screening tests and those which successfully completed the tests were built into Ni-H2 cells for short term testing. The separators with the best performance are tested for long term performance and life
    corecore