3,884 research outputs found

    Relativistic Klein-Gordon charge effects by information-theoretic measures

    Full text link
    The charge spreading of ground and excited states of Klein-Gordon particles moving in a Coulomb potential is quantitatively analyzed by means of the ordinary moments and the Heisenberg measure as well as by use of the most relevant information-theoretic measures of global (Shannon entropic power) and local (Fisher's information) types. The dependence of these complementary quantities on the nuclear charge Z and the quantum numbers characterizing the physical states is carefully discussed. The comparison of the relativistic Klein-Gordon and non-relativistic Schrodinger values is made. The non-relativistic limits at large principal quantum number n and for small values of Z are also reached.Comment: Accepted in New Journal of Physic

    Three strongly correlated charged bosons in a one-dimensional harmonic trap: natural orbital occupancies

    Full text link
    We study a one-dimensional system composed of three charged bosons confined in an external harmonic potential. More precisely, we investigate the ground-state correlation properties of the system, paying particular attention to the strong-interaction limit. We explain for the first time the nature of the degeneracies appearing in this limit in the spectrum of the reduced density matrix. An explicit representation of the asymptotic natural orbitals and their occupancies is given in terms of some integral equations.Comment: 6 pages, 4 figures, To appear in European Physical Journal

    CP Violation and Family Mixing in the Effective Electroweak Lagrangian

    Get PDF
    We construct the most general effective Lagrangian of the matter sector of the Standard Model, including mixing and CP violating terms. The Lagrangian contains the effective operators that give the leading contribution in theories where the physics beyond the Standard Model shows at a scale Λ>>MW\Lambda >>M_{W}. We perform the diagonalization and passage to the physical basis in full generality. We determine the contribution to the different observables and discuss the possible new sources of CP violation, the idea being to be able to gain some knowledge about new physics beyond the Standard Model from general considerations, without having to compute model by model. The values of the coefficients of the effective Lagrangian in some theories, including the Standard Model, are presented and we try to draw some general conclusions about the general pattern exhibited by physics beyond the Standard Model in what concerns CP violation. In the process we have had to deal with two theoretical problems which are very interesting in their own: the renormalization of the CKM matrix elements and the wave function renormalization in the on-shell scheme when mixing is present.Comment: A misplaced sentence was correcte

    Superconductivity induced by inter-band nesting in the three-dimensional honeycomb lattice

    Full text link
    In order to study whether the inter-band nesting can favor superconductivity arising from electron-electron repulsion in a three-dimensional system, we have looked at the repulsive Hubbard model on a stack of honeycomb (i.e., non-Bravais) lattices with the FLEX method, partly motivated by the superconductivity observed in MgB2. By systematically changing the shape of Fermi surface with varied band filling n and the third-direction hopping, we have found that the pair scattering across the two-bands is indeed found to give rise to gap functions that change sign across the bands and behave as an s- or d-wave within each band. This implies (a) the electron repulsion can assist gapful pairing when a phonon-mechanism pairing exists, and (b) the electron repulsion alone, when strong enough, can give rise to a d-wave-like pairing, which should be, for a group-theoretic reason, a time-reversal broken d+id with point nodes in the gap

    Parabolic stable surfaces with constant mean curvature

    Full text link
    We prove that if u is a bounded smooth function in the kernel of a nonnegative Schrodinger operator L=(Δ+q)-L=-(\Delta +q) on a parabolic Riemannian manifold M, then u is either identically zero or it has no zeros on M, and the linear space of such functions is 1-dimensional. We obtain consequences for orientable, complete stable surfaces with constant mean curvature HRH\in\mathbb{R} in homogeneous spaces E(κ,τ)\mathbb{E}(\kappa,\tau) with four dimensional isometry group. For instance, if M is an orientable, parabolic, complete immersed surface with constant mean curvature H in H2×R\mathbb{H}^2\times\mathbb{R}, then H1/2|H|\leq 1/2 and if equality holds, then M is either an entire graph or a vertical horocylinder.Comment: 15 pages, 1 figure. Minor changes have been incorporated (exchange finite capacity by parabolicity, and simplify the proof of Theorem 1)

    Characteristic features of the temperature dependence of the surface impedance in polycrystalline MgB2_2 samples

    Full text link
    The real Rs(T)R_s(T) and imaginary Xs(T)X_s(T) parts of the surface impedance Zs(T)=Rs(T)+iXs(T)Z_s(T)=R_s(T)+iX_s(T) in polycrystalline MgB2_2 samples of different density with the critical temperature Tc38T_c\approx 38 K are measured at the frequency of 9.4 GHz and in the temperature range 5T<2005\le T<200 K. The normal skin-effect condition Rs(T)=Xs(T)R_s(T)=X_s(T) at TTcT\ge T_c holds only for the samples of the highest density with roughness sizes not more than 0.1 μ\mum. For such samples extrapolation T0T\to 0 of the linear at T<Tc/2T<T_c/2 temperature dependences λL(T)=Xs(T)/ωμ0\lambda_L(T)=X_s(T)/\omega\mu_0 and Rs(T)R_s(T) results in values of the London penetration depth λL(0)600\lambda_L(0)\approx 600 \AA and residual surface resistance Rres0.8R_{res}\approx 0.8 mΩ\Omega. In the entire temperature range the dependences Rs(T)R_s(T) and Xs(T)X_s(T) are well described by the modified two-fluid model.Comment: 7 pages, 3 figures. Europhysics Letters, accepted for publicatio

    SoNeUCON_{ABC}Pro: an access control model for social networks with translucent user provenance

    Get PDF
    Proceedings of: SecureComm 2017 International Workshops, ATCS and SePrIoT, Niagara Falls, ON, Canada, October 22–25, 2017Web-Based Social Networks (WBSNs) are used by millions of people worldwide. While WBSNs provide many benefits, privacy preservation is a concern. The management of access control can help to assure data is accessed by authorized users. However, it is critical to provide sufficient flexibility so that a rich set of conditions may be imposed by users. In this paper we coin the term user provenance to refer to tracing users actions to supplement the authorisation decision when users request access. For example restricting access to a particular photograph to those which have “liked” the owners profile. However, such a tracing of actions has the potential to impact the privacy of users requesting access. To mitigate this potential privacy loss the concept of translucency is applied. This paper extends SoNeUCONABC model and presents SoNeUCONABCPro, an access control model which includes translucent user provenance. Entities and access control policies along with their enforcement procedure are formally defined. The evaluation demonstrates that the system satisfies the imposed goals and supports the feasibility of this model in different scenarios.This work was supported by the MINECO grants TIN2013-46469-R (SPINY: Security and Privacy in the Internet of You) and TIN2016-79095-C2-2-R (SMOG-DEV); by the CAM grant S2013/ICE-3095 (CIBERDINE: Cybersecurity, Data, and Risks); and by the Programa de Ayudas para la Movilidad of Carlos III University of Madrid, Spain (J. M. de Fuentes and L. Gonzalez-Manzano grants)

    Changing a semantics: opportunism or courage?

    Full text link
    The generalized models for higher-order logics introduced by Leon Henkin, and their multiple offspring over the years, have become a standard tool in many areas of logic. Even so, discussion has persisted about their technical status, and perhaps even their conceptual legitimacy. This paper gives a systematic view of generalized model techniques, discusses what they mean in mathematical and philosophical terms, and presents a few technical themes and results about their role in algebraic representation, calibrating provability, lowering complexity, understanding fixed-point logics, and achieving set-theoretic absoluteness. We also show how thinking about Henkin's approach to semantics of logical systems in this generality can yield new results, dispelling the impression of adhocness. This paper is dedicated to Leon Henkin, a deep logician who has changed the way we all work, while also being an always open, modest, and encouraging colleague and friend.Comment: 27 pages. To appear in: The life and work of Leon Henkin: Essays on his contributions (Studies in Universal Logic) eds: Manzano, M., Sain, I. and Alonso, E., 201
    corecore