32 research outputs found

    Improvement of FAO-56 Model to Estimate Transpiration Fluxes of Drought Tolerant Crops under Soil Water Deficit: Application for Olive Groves

    Get PDF
    [EN] Agro-hydrological models are considered an economic and simple tool for quantifying crop water requirements. In the last two decades, agro-hydrological physically based models have been developed to simulate mass and energy exchange processes in the soil-plant-atmosphere system. Although very reliable, because of the high number of required variables, simplified models have been proposed to quantify crop water consumes. The main aim of this paper is to propose an amendment of the Food and Agricultural Organization (FAO) of the United Nations FAO-56 spreadsheet program to introduce a more realistic shape of the stress function, valid for mature olive orchards (Olea europaea L.). The modified model is successively validated by means of the comparison between measured and simulated soil water contents and actual transpiration fluxes. These outputs are finally compared with those obtained with the original version of the model. Experiments also allowed assessing the ability of simulated crop water stress coefficients to explain the actual water stress conditions evaluated on the basis of measured relative transpirations and midday stem water potentials. The results show that the modified model significantly improves the estimation of actual crop transpiration fluxes and soil water contents under soil water deficit conditions, according to the RMSEs associated with the revised model, resulting in significantly higher than the corresponding values obtained with the original version. (C) 2014 American Society of Civil Engineers.Rallo, G.; Baiamonte, G.; Manzano Juarez, J.; Provenzano, G. (2014). Improvement of FAO-56 Model to Estimate Transpiration Fluxes of Drought Tolerant Crops under Soil Water Deficit: Application for Olive Groves. Journal of Irrigation and Drainage Engineering. 140(9):1-8. doi:10.1061/(ASCE)IR.1943-4774.0000693S18140

    Energy audit of irrigation networks

    Get PDF
    The relationship between water and energy in water distribution systems (WDS) has been a growing concern among energy and water experts. Among the different strategies to improve water¿energy efficiency in water distribution networks, energy audits are of paramount importance as they quantify water flow requirements, the amount of energy consumed to meet demand and leakage and friction losses. Previous work has presented the energy audit process for urban WDS and this energy audit is extended to irrigation networks here. This work analyses the most common types of irrigation emitters (sprinklers and pressure compensating and non-pressure compensating drippers), hydrant specifications, irrigation management systems (on-demand or rigid scheduled), and energy losses due to friction in pipes, control valves and irrigation hydrants. The energy audit does not assess whether management of the network is optimal, but analyses the energy consumption. Some of the performance indicators have already been defined for agricultural water networks, some are identical to those of urban WDS, but in addition, a new one is presented that disaggregates the energy dissipated into three terms, energy losses in pipelines, in hydraulic valves and in irrigation hydrants. These indicators show information necessary to better understand the performance of the irrigation network under study, to carry out a deep analysis of energy consumption and to allow for comparison with similar systems. The paper presents the analysis of a real case study conducted on the irrigation network of the garden of the Universidad Politécnica de ValenciaPardo, MA.; Manzano Juarez, J.; Cabrera Marcet, E.; García Serra, J. (2013). Energy audit of irrigation networks. Biosystems Engineering. 115(1):89-101. doi:10.1016/j.biosystemseng.2013.02.005S89101115

    Standalone direct pumping photovoltaic system or energy storage in batteries for supplying irrigation networks. Cost analysis

    Full text link
    [EN] Solar photovoltaic systems have become one of the most popular topics in the water management industry. Moreover, irrigation networks are water- and energy-hungry, and utilitymanagers are likely to adaptwater consumption (and consequently energy demand) to the hours inwhich there is energy availability. In countries such as Spain (with high irradiance values), solar energy is an available green alternative characterised by zero electricity costs and significantly lower environmental impact. In this work, several types of irrigation scheduled programmes (according to different irrigation sectors) that minimise the number of photovoltaic solar panels to be installed are studied; moreover, the effects of the variable costs linked to energy (energy and emissions costs) are presented. Finally, the effect of incorporating batteries for storing energy to protect the system against emergencies, such as unfavourable weather, is proposed. The irrigation hours available to satisfywater demands are limited by sunlight; they are also limited by the condition that the irrigation schedule type has to be rigid (predetermined rotation) and that the pressure at any node has to be above minimumpressure required by standards. A real case study is performed, and the results obtained demonstrate that there is no universal solution; this is because the portfolio of alternatives is based on investments for purchasing equipment at present and also on future energy savings (revenues). Apart from these two values, there is an economic value (equivalent discontinuous discount rate), which also influences the final results.This work was supported by the research project “GESAEN” through the 2016 call of the Vicerrectorado de Investigación, Desarrollo e Innovación de la Universidad de Alicante GRE-16-08.Pardo Picazo, MA.; Manzano Juarez, J.; Valdes-Abellan, J.; Cobacho Jordán, R. (2019). Standalone direct pumping photovoltaic system or energy storage in batteries for supplying irrigation networks. Cost analysis. The Science of The Total Environment. 673:821-830. https://doi.org/10.1016/j.scitotenv.2019.04.050S82183067

    Optimization of an isolated photovoltaic water pumping system with technical-economic criteria in a water users association

    Full text link
    [EN] With proper management, the modernization of irrigation systems makes it possible to improve the efficiency of application and use of water at the cost of an increase in pumping needs and, therefore, an increment of the energy consumed. The recent drastic price increase for energy put the viability of many farms at risk. In this context, using photovoltaic solar energy to power pumping stations has become an increasingly attractive alternative and a cheap and reliable option. The dimensioning of pumping systems powered by photovoltaic solar energy must be done considering the variability of solar radiation to take advantage of the available photovoltaic energy, especially during periods of less irradiation. By investigating a particular case, this paper studies the effect of increasing the number of pumps in parallel while maintaining the total power, as well as the relationship between the installed photovoltaic capacity and the power of the pumping system, to meet pumping requirements throughout the year. The pumped volume increased as the number of pumps installed in parallel increased for the same photovoltaic power generator. Although this increment has a limit, beyond which no greater significant rise in volume is achieved, installation costs increase. In addition, for the same pumping power installed, the required photovoltaic generator power decreases as the number of pumps in parallel increases. In the case studied, a 27% increase in the annual pumped volume was achieved by incrementing the number of pumps in parallel from one to five, thus leading to a 44.1% reduction in the size of the photovoltaic generator and a 13.3% reduction in the cost of installation compared with a system with only one pump. The procedure used to determine the most appropriate number of pumps to install in parallel when pumping water between two tanks, which minimizes the photovoltaic generator's size while guaranteeing pumping requirements, is easily generalizable for sizing isolated photovoltaic water pumping systems.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This study has received funding for the WATER¿ 4CAST project (PROMETEO/2021/074), funded by the Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital of the Comu¿ nitat Valenciana.Carricondo-Antón, JM.; Jiménez Bello, MA.; Manzano Juarez, J.; Royuela, A.; González-Altozano, P. (2023). Optimization of an isolated photovoltaic water pumping system with technical-economic criteria in a water users association. Irrigation Science. 41(6):817-834. https://doi.org/10.1007/s00271-023-00859-6817834416Abadia R, Rocamora C, Ruiz A, Puerto H (2008) Energy efficiency in irrigation distribution networks I: theory. Biosyst Eng 101:21–27. https://doi.org/10.1016/j.biosystemseng.2008.05.013Ahmed EEE, Demirci A (2022) Multi-stage and multi-objective optimization for optimal sizing of stand-alone photovoltaic water pumping systems. Energy. https://doi.org/10.1016/j.energy.2022.124048Bakelli Y, Hadj Arab A, Azoui B (2011) Optimal sizing of photovoltaic pumping system with water tank storage using LPSP concept. Sol Energy 85:288–294. https://doi.org/10.1016/j.solener.2010.11.023Bhattacharjee A, Mandal DK, Saha H (2016) Design of an optimized battery energy storage enabled Solar PV Pump for rural irrigation. In: 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES). pp 1–6Branker K, Pathak MJM, Pearce JM (2011) A review of solar photovoltaic levelized cost of electricityCarrêlo I (2014) High power PV pumping systems: two case studies in SpainCarrillo Cobo MT, Camacho Poyato E, Montesinos P, Rodríguez Díaz JA (2014) New model for sustainable management of pressurized irrigation networks. Application to Bembézar MD irrigation district (Spain). Sci Total Environ 473(474):1–8. https://doi.org/10.1016/j.scitotenv.2013.11.093Castel J (2000) Water use of developing citrus canopies in Valencia. Proceeding Int Soc Citric IX Congres 223–226Chandel SS, Naik MN, Chandel R (2017) Review of performance studies of direct coupled photovoltaic water pumping systems and case study. Renew Sustain Energy Rev 76:163–175. https://doi.org/10.1016/j.rser.2017.03.019Córcoles JI, Tarjuelo JM, Carrión PA, Moreno MÁ (2015) Methodology to minimize energy costs in an on-demand irrigation network based on arranged opening of hydrants. Water Resour Manag 29:3697–3710. https://doi.org/10.1007/s11269-015-1024-9Errouha M, Combe Q, Motahhir S et al (2022) Design and processor in the loop implementation of an improved control for IM driven solar PV fed water pumping system. Sci Rep. https://doi.org/10.1038/s41598-022-08252-7García-Tejero IF, Durán Zuazo V (2018) Water Scarcity and Sustainable Agriculture in Semiarid Environment. Tools, Strategies and Challenges for Woody CropsGasque M, González-Altozano P, Gutiérrez-Colomer RP, García-Marí E (2020) Optimisation of the distribution of power from a photovoltaic generator between two pumps working in parallel. Sol Energy 198:324–334. https://doi.org/10.1016/j.solener.2020.01.013Gasque M, González-Altozano P, Gutiérrez-Colomer RP, García-Marí E (2021) Comparative evaluation of two photovoltaic multi-pump parallel system configurations for optimal distribution of the generated power. Sustain Energy Technol Assessments. https://doi.org/10.1016/j.seta.2021.101634Gasque M, González-Altozano P, Gimeno-Sales FJ, Orts-Grau S, Balbastre-Peralta I, Martinez-Navarro G (2022) Segui-Chilet S (2022) Energy Efficiency Optimization in Battery-Based Photovoltaic Pumping Schemes. IEEE Access 10:54064–54078. https://doi.org/10.1109/ACCESS.2022.3175586Gevorkov L, Domínguez-García JL, Romero LT (2023) Review on Solar Photovoltaic-Powered Pumping Systems. Energies (Basel) 16Hajjaji M, Mezghani D, Cristofari C, Mami A (2022) Technical, Economic, and Intelligent Optimization for the Optimal Sizing of a Hybrid Renewable Energy System with a Multi Storage System on Remote Island in Tunisia. Electronics (Switzerland) https://doi.org/10.3390/electronics11203261Hamidat A, Benyoucef B (2009) Systematic procedures for sizing photovoltaic pumping system, using water tank storage. Energy Policy 37:1489–1501. https://doi.org/10.1016/j.enpol.2008.12.014Hamidat A, Benyoucef B, Hartani T (2003) Small-scale irrigation with photovoltaic water pumping system in Sahara regions. Renew Energy 28:1081–1096. https://doi.org/10.1016/S0960-1481(02)00058-7Hilali A, Mardoude Y, Essahlaoui A et al (2022) Migration to solar water pump system: Environmental and economic benefits and their optimization using genetic algorithm Based MPPT. Energy Rep 8:10144–10153. https://doi.org/10.1016/j.egyr.2022.08.017Jiménez-Bello MA, Martínez Alzamora F, Bou Soler V, Ayala HJB (2010) Methodology for grouping intakes of pressurised irrigation networks into sectors to minimise energy consumption. Biosyst Eng 105:429–438. https://doi.org/10.1016/j.biosystemseng.2009.12.014Jiménez Bello M, Alzamora FM, Castel JR, Intrigliolo DS (2011) Validation of a methodology for grouping intakes of pressurized irrigation networks into sectors to minimize energy consumption. Agric Water Manag 102:46–53. https://doi.org/10.1016/j.agwat.2011.10.005Jiménez-Bello MA, Martínez Alzamora F, Martínez Gimeno MA, Intrigliolo DS (2015) Comunidad De Regantes Mediante Balance De Energia Con Imágenes Landsat 8. XXXIII Congr Nac RiegosKarmouni H, Chouiekh M, Motahhir S et al (2022) Optimization and implementation of a photovoltaic pumping system using the sine–cosine algorithm. Eng Appl Artif Intell. https://doi.org/10.1016/j.engappai.2022.105104Li G, Jin Y, Akram MW, Chen X (2017) Research and current status of the solar photovoltaic water pumping system – A review. Renew Sustain Energy Rev 79:440–458. https://doi.org/10.1016/j.rser.2017.05.055López-Luque R, Reca J, Martínez J (2015) Optimal design of a standalone direct pumping photovoltaic system for deficit irrigation of olive orchards. Appl Energy 149:13–23. https://doi.org/10.1016/j.apenergy.2015.03.107Markvart T, Castaner L (2003) Practical Handbook of Photovoltaics: Fundamentals and Applications. Elsevier Science & Technology, KidlingtonMérida García A, Fernández García I, Camacho Poyato E et al (2018) Coupling irrigation scheduling with solar energy production in a smart irrigation management system. J Clean Prod 175:670–682. https://doi.org/10.1016/j.jclepro.2017.12.093Mérida García A, Gallagher J, McNabola A et al (2019) Comparing the environmental and economic impacts of on- or off-grid solar photovoltaics with traditional energy sources for rural irrigation systems. Renew Energy 140:895–904. https://doi.org/10.1016/j.renene.2019.03.122Mérida García A, González Perea R, Camacho Poyato E et al (2020) Comprehensive sizing methodology of smart photovoltaic irrigation systems. Agric Water Manag 229:105888. https://doi.org/10.1016/j.agwat.2019.105888Monís JI, López-Luque R, Reca J, Martínez J (2020) Multistage bounded evolutionary algorithm to optimize the design of sustainable photovoltaic (PV) pumping irrigation systems with storage. Sustain. https://doi.org/10.3390/su12031026Mosetlhe T, Babatunde O, Yusuff A et al (2023) A MCDM approach for selection of microgrid configuration for rural water pumping system. Energy Rep 9:922–929. https://doi.org/10.1016/j.egyr.2022.11.040Okakwu IK, Alayande AS, Akinyele DO et al (2022) Effects of total system head and solar radiation on the techno-economics of PV groundwater pumping irrigation system for sustainable agricultural production. Sci Afr. https://doi.org/10.1016/j.sciaf.2022.e01118Orts-Grau S, González-Altozano P, Gimeno-Sales FJ, Balbastre-Peralta I, Martínez Márquez CI, Gasque M (2021) Photovoltaic water pumping: comparison between direct and lithium battery solutions. IEEE Access 9:101147–101163. https://doi.org/10.1109/ACCESS.2021.3097246Paredes-Sánchez JP, Villicaña-Ortíz E, Xiberta-Bernat J (2015) Solar water pumping system for water mining environmental control in a slate mine of Spain. J Clean Prod 87:501–504. https://doi.org/10.1016/j.jclepro.2014.10.047Picazo MÁP, Juárez JM, García-Márquez D (2018) Energy consumption optimization in irrigation networks supplied by a standalone direct pumping photovoltaic system. Sustain. https://doi.org/10.3390/su10114203Reges J, Braga E, Mazza L, Alexandria A (2016) Inserting photovoltaic solar energy to an automated irrigation system. Int J Comput Appl 134:1–7. https://doi.org/10.5120/ijca2016907751Rossman LA (2000) EPANET 2. User manual. U S Environ Prot Agency (EPA), U S ASánchez-Escobar F, Coq-Huelva D, Sanz-Cañada J (2018) Measurement of sustainable intensification by the integrated analysis of energy and economic flows: Case study of the olive-oil agricultural system of Estepa, Spain. J Clean Prod 201:463–470. https://doi.org/10.1016/j.jclepro.2018.07.294Santra P (2020) Performance evaluation of solar PV pumping system for providing irrigation through micro-irrigation techniques using surface water resources in hot arid region of India. Agric Water Manag. https://doi.org/10.1016/j.agwat.2020.106554Senthil Kumar S, Bibin C, Akash K et al (2020) Solar powered water pumping systems for irrigation: A comprehensive review on developments and prospects towards a green energy approach. Mater Today Proc 33:303–307. https://doi.org/10.1016/j.matpr.2020.04.092Syngros G, Balaras CA, Koubogiannis DG (2017) Embodied CO2 emissions in building construction materials of hellenic dwellings. Procedia Environ Sci 38:500–508. https://doi.org/10.1016/j.proenv.2017.03.113Tiwari AK, Kalamkar VR, Pande RR et al (2020) Effect of head and PV array configurations on solar water pumping system. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.09.200Todde G, Murgia L, Deligios PA et al (2019) Energy and environmental performances of hybrid photovoltaic irrigation systems in Mediterranean intensive and super-intensive olive orchards. Sci Total Environ 651:2514–2523. https://doi.org/10.1016/j.scitotenv.2018.10.175Verma S, Mishra S, Chowdhury S et al (2020) Solar PV powered water pumping system – A review. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.09.434Wazed MS, Hughes BR, O’Connor D, Kaiser Calautit J (2018) A review of sustainable solar irrigation systems for sub-Saharan Africa. Renew Sustain Energy Rev 81:1206–1225. https://doi.org/10.1016/j.rser.2017.08.039Willaarts BA, Lechón Y, Mayor B et al (2020) Cross-sectoral implications of the implementation of irrigation water use efficiency policies in Spain: a nexus footprint approach. Ecol Indic 109:105795. https://doi.org/10.1016/j.ecolind.2019.105795Yahyaoui I, Tadeo F, Segatto M (2016) Energy and water management for drip-irrigation of tomatoes in a semi-arid district. Agric Water Manag Elsevier: https://doi.org/10.1016/j.agwat.2016.08.003Zafrilla JE, Arce G, Cadarso MÁ et al (2019) Triple bottom line analysis of the Spanish solar photovoltaic sector: a footprint assessment. Renew Sustain Energy Rev 114:109311. https://doi.org/10.1016/j.rser.2019.10931

    Methodology for flushing pressurised irrigation networks for fertigation and operation maintenance purposes

    Full text link
    [EN] Pressurised irrigation networks with a certain degree of automation allow centralized fertigation and maintenance operations such as cleaning subunits and preventing the proliferation of invasive species such as zebra mussels. Until now, there is no methodology that guarantees the total cleaning of the network of a substance in the shortest possible time. In the same way, it does not exist to guarantee reaching all consumption points with a certain concentration of a substance, injecting the minimum possible amount. For that purpose, a general novel methodology has been developed that makes use of the network¿s hydraulic model and parallel multi-objective genetic algorithms to flush the network of a certain substance or to get it to all consumption points in the shortest possible time and supplying a minimum volume. This method assumes that the available pressure at the source is always over a minimum value. The arrival times to the consumption points are minimized and the injected volume is reduced to the minimum of replacement, that is, the volume of the network pipes. The methodology applied to the study case allowed the entire network to be flushed in a minimum time of 2.46 h. On a normal irrigation day, without making any changes to the irrigation schedule the time to completely flush the network is 11.76 h. Furthermore, the injected volume differs greatly from the total volume of the pipes.This study has been partially supported by the ADAPTAMED project (RTI2018-101483-B-I00), funded by the Ministerio de Economia y Competitividad (MINECO) of Spain and with EU FEDER funds.Jiménez Bello, MA.; Alonso Campos, JC.; Manzano Juarez, J.; Martínez Alzamora, F. (2021). Methodology for flushing pressurised irrigation networks for fertigation and operation maintenance purposes. Irrigation Science. 39(3):375-384. https://doi.org/10.1007/s00271-021-00724-437538439

    Multioutlet Hydrants in Mediterranean Pressurized Irrigation Networks: Operation Problems and Hydraulic Characterization

    Full text link
    [EN] Multioutlet hydrants as joint network infrastructure remain briefly addressed in the literature. Studies have always been limited to the individual treatment of the hydraulic components but not as a whole element. This study presents the main problems in the field of multioutlet hydrants within hydraulic infrastructure for pressure irrigation networks in Mediterranean agriculture. First, a field study with interviews was carried out in 30 water users associations (WUAs) between 2010 and 2018. Following this study, a laboratory test methodology was proposed to characterize this type of hydrant. Subsequently, four laboratory tests were performed on 12 multioutlet hydrants with different and common configurations found in irrigation networks: (i) head losses produced, (ii) global measurement precision in the multioutlet hydrant, (iii) blockage analysis in meters in vertical orientation, and (iv) hydrant behavior in response to hydraulic transients. The tests show that a horizontal configuration of the measuring elements with fewer than ten outlets and a suitable dimensioning of elements improve element maneuverability, instrument metrology, and irrigation emission uniformity. Finally, the importance of adequate design, dimensioning, and maintenance of the multioutlet hydrant devices is evidenced as a key point for the adequate management of collective pressure irrigation networks.Balbastre Peralta, I.; Arviza Valverde, J.; Palau, C.; González-Pavón, C.; Manzano Juarez, J. (2021). Multioutlet Hydrants in Mediterranean Pressurized Irrigation Networks: Operation Problems and Hydraulic Characterization. Agronomy. 11(11):1-15. https://doi.org/10.3390/agronomy11112240115111

    Numerical Analysis of Woltman Meter Accuracy under Flow Perturbations

    Get PDF
    [EN] One of the unknowns in the instrumentation for water measurement is what degree of influence other hydraulic elements exert on the velocity profile and, consequently, on the measurement errors. In this work, the measurement errors of a horizontal-axis Woltman meter produced by a gate valve and by a butterfly valve in different hydraulic configurations were studied using a simplified numerical model. The gate valve was installed beside the meter and three pipe diameters upstream of the meter and were operated with closures of 75%, 50% and 25%, while the butterfly valve was installed at three pipe diameters upstream of the meter with closures of 0 degrees (open) and 30 degrees. The numerical model based on the rotor's torque balance equations and Computational Fluid Dynamics (CFD) was validated by experimental tests. According to the results, it was concluded that the proposed model is valid and capable of estimating the errors caused by the hydraulic fittings arranged next to the meter. In addition, it is evident that for the analysed operating range, both valves must be installed at least three diameters of straight pipe upstream of the meter.Palau, C.; Balbastre Peralta, I.; Manzano Juarez, J.; Moreira De Azevedo, B.; Bomfim, GV. (2019). Numerical Analysis of Woltman Meter Accuracy under Flow Perturbations. Water. 11(12). https://doi.org/10.3390/w11122622111

    Caracterización y metodología de selección de inyectores Venturi en riego presurizado

    Full text link
    [ES] El inyector para quimigación tipo Venturi tiene ventajas que hacen que sea un dispositivo bastante utilizado; no requiere energía eléctrica y es económico. Por el contrario, genera pérdidas de energía elevadas, afectando a las presiones en la instalación. Para una correcta caracterización de estos equipos deben relacionarse las presiones en los puntos de entrada, salida e inyección con los caudales principales e inyectados. Estas relaciones analíticas, que las introduce la norma de la Organización Internacional de Normalización (ISO 15873:2002), se pueden obtener de forma teórica; aunque es más recomendable que el fabricante establezca mediante ensayos de funcionamiento, el comportamiento real del inyector. Es oportuno que estas relaciones se proporcionen gráficamente, en la forma de nomogramas, para facilitar la asociación de las variables implicadas y la posterior selección de un modelo o clase concretos bajo una tipología de montaje. Así, para que esta selección sea adecuada es necesario también el conocimiento preciso de las subunidades de riego que alimenta y el programa de fertilización de la explotación.[EN] Venturi-type chemigation injectors are widely used due to their advantages: they do not require electric power and are cheap to operate. However, they also generate considerable energy losses which affect the pressure in the system. The correct characterization of these systems requires pressures to be correctly set at the inlet, injector and outlet points in relation to main and injected solution flows. These analytical relationships, as described in the International Organization for Standardization¿s standard ISO 15873:2002, can be obtained theoretically, although it is recommended that the manufacturer should determine the real behavior of the injector by operational tests. These relationships should also be provided graphically in the form of nomograms in order to facilitate the association of the variables involved and the subsequent selection of a specific model or class and type of assembly. In order to make the right choice, it is also necessary to have precise information on the irrigation sub-units that it feeds and the grower¿s fertilization program.Extraído parcialmente de la Tesis del primer autor, con el apoyo financiero de la Universitat Politècnica de València y del Centro Valenciano de Estudios del RiegoManzano Juarez, J.; Palau, C.; Moreira De Azevedo, B.; Do Bomfim, GV.; Vasconcelos, DV. (2018). Characterization and selection method of Venturi injectors for pressurized irrigation. Revista Ciência Agronômica (Online). 49(2):201-210. https://doi.org/10.5935/1806-6690.20180023S20121049

    Dynamic procedure for daily PM56 ETo mapping conducive to site-specific irrigation recommendations in areas covered by agricultural weather networks.

    Full text link
    [EN] Modern agriculture is underpinned by actual meteorological data registered using automated meteorological stations forming networks specifically created for advising purposes. In many cases, those data used to be accessible online by means of APIs (Application Programming Interface). One of the most common cases is the irrigation-advice weather network implemented with the aim of obtaining ETo values to be used in irrigation recommendations. However, those punctual values of ETo scattered throughout the territory do not allow to produce specific irrigation recommendations for each farm. The only way of disposing site-specific values of ETo is by compiling maps that describe its spatial variation. With this objective, a new dynamic procedure based on an existing regression-based technique of interpolation was proposed. Using the meteorological data registered at the end of each day, maximum and minimum temperature, maximum and minimum relative humidity, wind velocity, and radiation maps were interpolated and then, an ETo map was derived. The proposed procedure demonstrated a special adaptation capacity to the synoptic pattern of each day using some geographical features or others, as appropriate to explain the spatial variability of the interpolated meteorological variable. In those months where radiation plays a key role in the ETo value (growing season), ETo maps obtained were especially fine-grained in areas with significant relief. This procedure improved other contrasted methodologies they were compared with. The impact of using the nearest-weather-station ETo vs interpolated value on a daily water needs was investigated and near 10% average value of error was encountered in the case study.This study has received funding from the eGROUNDWATER project (GA n. 1921) , part of the PRIMA program supported by the European Union 's Horizon 2020 research and innovation program, and the WATER4CAST project (PROMETEO/2021/074) , which is funded by the Conselleria de Innovacion, Universidades, Ciencia y Sociedad Digital de la Comunitat Valenciana.Meteorological data were provided by SIAR: " Sistema de Informacion Agroclimatica para el Regadio. Ministerio de Agricultura, Pesca y Alimentacion" . Special thanks to Carlos Garrido Garrido and Ivan Cilleros Fuentetaja for providing us an API-SIAR access. Thanks to Luis Bonet for giving us permission to use the picture of the IVIA-SIAR automated station.Garcia-Prats, A.; Carricondo-Antón, JM.; Jiménez Bello, MA.; Manzano Juarez, J.; López Pérez, E.; Pulido-Velazquez, M. (2023). Dynamic procedure for daily PM56 ETo mapping conducive to site-specific irrigation recommendations in areas covered by agricultural weather networks. Agricultural Water Management. 287:1-18. https://doi.org/10.1016/j.agwat.2023.10841511828

    Irrigation Post-Modernization. Farmers Envisioning Irrigation Policy in the Region of Valencia (Spain)

    Full text link
    [EN] During the last three decades, like many other Mediterranean states, Spain has intensively promoted the modernization of irrigation, focusing mainly on the introduction of pressurized irrigation systems. Following 30 years of investment, a shift in irrigation policies is needed to solve some of the deficiencies in this modernization process and to incorporate new measures to cope with upcoming challenges generated by international markets, climate change and other social and economic processes. This paper describes and analyses the results of participatory research carried out with the water user associations in the autonomous region of Valencia, in order to define post-modernization irrigation policies. A survey and 24 local workshops involving 304 water user associations were conducted during the irrigation season of 2018 in order to form an assessment of the sector and design new irrigation policies. The results show that after 30 years of important investment, the obsolescence of the infrastructure has become the current main priority, making farmers dependent on public subsidies. New necessities have also emerged, such as renewable energies and nonconventional water resources, which farmers consider indispensable in order to reduce operating costs and guarantee water supply.This work has been developed under the framework of the research agreement "Estudio para la modernizacion del regadio en la Comunidad Valenciana", between the Universitat Politecnica de Valencia and the Generalitat Valenciana, and conducted as part of the research project "Design and evaluation of strategies to adapt to global climate change in Mediterranean watersheds by using irrigation water intensively (ADAPTAMED)" (RTI2018-101483-B-I00), funded by the Ministerio de Economia y Competitividad (MINECO) of Spain and with EU FEDER funds.Sanchis Ibor, C.; Ortega-Reig, M.; Guillem-Garcia, A.; Carricondo, JM.; Manzano Juarez, J.; García Molla, M.; Royuela, A. (2021). Irrigation Post-Modernization. Farmers Envisioning Irrigation Policy in the Region of Valencia (Spain). Agriculture. 11(4):1-21. https://doi.org/10.3390/agriculture11040317S121114Siebert, S., Kummu, M., Porkka, M., Döll, P., Ramankutty, N., & Scanlon, B. R. (2015). A global data set of the extent of irrigated land from 1900 to 2005. Hydrology and Earth System Sciences, 19(3), 1521-1545. doi:10.5194/hess-19-1521-2015Projects in Irrigation and Drainage https://projects.worldbank.org/en/projects-operations/projects-list?sectorcode_exact=AIInternational Commission on Irrigation and Drainage (ICID), World Irrigated Area 2018 https://www.icid.org/world-irrigated-area.pdfBenouniche, M., Zwarteveen, M., & Kuper, M. (2014). BRICOLAGEAS INNOVATION: OPENING THE BLACK BOX OF DRIP IRRIGATION SYSTEMS. Irrigation and Drainage, 63(5), 651-658. doi:10.1002/ird.1854Van der Kooij, S., Zwarteveen, M., & Kuper, M. (2015). The material of the social: the mutual shaping of institutions by irrigation technology and society in Seguia Khrichfa, Morocco. International Journal of the Commons, 9(1), 129. doi:10.18352/ijc.539Ortega-Reig, M., Sanchis-Ibor, C., Palau-Salvador, G., García-Mollá, M., & Avellá-Reus, L. (2017). Institutional and management implications of drip irrigation introduction in collective irrigation systems in Spain. Agricultural Water Management, 187, 164-172. doi:10.1016/j.agwat.2017.03.009García-Mollá, M., Ortega-Reig, M., Boelens, R., & Sanchis-Ibor, C. (2020). Hybridizing the commons. Privatizing and outsourcing collective irrigation management after technological change in Spain. World Development, 132, 104983. doi:10.1016/j.worlddev.2020.104983Lecina, S., Isidoro, D., Playán, E., & Aragüés, R. (2010). Irrigation Modernization in Spain: Effects on Water Quantity and Quality—A Conceptual Approach. International Journal of Water Resources Development, 26(2), 265-282. doi:10.1080/07900621003655734Berbel, J., & Mateos, L. (2014). Does investment in irrigation technology necessarily generate rebound effects? A simulation analysis based on an agro-economic model. Agricultural Systems, 128, 25-34. doi:10.1016/j.agsy.2014.04.002Berbel, J., Gutiérrez-Martín, C., Rodríguez-Díaz, J. A., Camacho, E., & Montesinos, P. (2014). Literature Review on Rebound Effect of Water Saving Measures and Analysis of a Spanish Case Study. Water Resources Management, 29(3), 663-678. doi:10.1007/s11269-014-0839-0Berbel, J., Gutiérrez-Martín, C., & Expósito, A. (2018). Impacts of irrigation efficiency improvement on water use, water consumption and response to water price at field level. Agricultural Water Management, 203, 423-429. doi:10.1016/j.agwat.2018.02.026Molle, F., & Tanouti, O. (2017). Squaring the circle: Agricultural intensification vs. water conservation in Morocco. Agricultural Water Management, 192, 170-179. doi:10.1016/j.agwat.2017.07.009Pérez-Blanco, C. D., Hrast-Essenfelder, A., & Perry, C. (2020). Irrigation Technology and Water Conservation: A Review of the Theory and Evidence. Review of Environmental Economics and Policy, 14(2), 216-239. doi:10.1093/reep/reaa004Rodríguez-Díaz, J. A., Pérez-Urrestarazu, L., Camacho-Poyato, E., & Montesinos, P. (2011). The paradox of irrigation scheme modernization: more efficient water use linked to higher energy demand. Spanish Journal of Agricultural Research, 9(4), 1000. doi:10.5424/sjar/20110904-492-10Rocamora, C., Vera, J., & Abadía, R. (2012). Strategy for Efficient Energy Management to solve energy problems in modernized irrigation: analysis of the Spanish case. Irrigation Science, 31(5), 1139-1158. doi:10.1007/s00271-012-0394-5Espinosa-Tasón, J., Berbel, J., & Gutiérrez-Martín, C. (2020). Energized water: Evolution of water-energy nexus in the Spanish irrigated agriculture, 1950–2017. Agricultural Water Management, 233, 106073. doi:10.1016/j.agwat.2020.106073Lopez-Gunn, E., Zorrilla, P., Prieto, F., & Llamas, M. R. (2012). Lost in translation? Water efficiency in Spanish agriculture. Agricultural Water Management, 108, 83-95. doi:10.1016/j.agwat.2012.01.005Garb, Y., & Friedlander, L. (2014). From transfer to translation: Using systemic understandings of technology to understand drip irrigation uptake. Agricultural Systems, 128, 13-24. doi:10.1016/j.agsy.2014.04.003Venot, J.-P., Zwarteveen, M., Kuper, M., Boesveld, H., Bossenbroek, L., Kooij, S. V. D., … Verma, S. (2014). BEYOND THE PROMISES OF TECHNOLOGY: A REVIEW OF THE DISCOURSES AND ACTORS WHO MAKE DRIP IRRIGATION. Irrigation and Drainage, 63(2), 186-194. doi:10.1002/ird.1839Soto-García, M., Martínez-Alvarez, V., García-Bastida, P. A., Alcon, F., & Martin-Gorriz, B. (2013). Effect of water scarcity and modernisation on the performance of irrigation districts in south-eastern Spain. Agricultural Water Management, 124, 11-19. doi:10.1016/j.agwat.2013.03.019Playán, E., Salvador, R., López, C., Lecina, S., Dechmi, F., & Zapata, N. (2014). Solid-Set Sprinkler Irrigation Controllers Driven by Simulation Models: Opportunities and Bottlenecks. Journal of Irrigation and Drainage Engineering, 140(1), 04013001. doi:10.1061/(asce)ir.1943-4774.0000653Tarjuelo, J. M., Rodriguez-Diaz, J. A., Abadía, R., Camacho, E., Rocamora, C., & Moreno, M. A. (2015). Efficient water and energy use in irrigation modernization: Lessons from Spanish case studies. Agricultural Water Management, 162, 67-77. doi:10.1016/j.agwat.2015.08.009Informe Del Sector Agrari Valencià 2019: València: Generalitat Valenciana 2021 http://www.agroambient.gva.es/va/informes-del-sector-agrario-valencianoPlan Hidrológico de la Cuenca Del Júcar 2015–2021 https://www.chj.es/es-es/medioambiente/planificacionhidrologica/Paginas/PHC-2015–2021-Plan-Hidrologico-cuenca.aspxPlan Hidrológico de la Demarcación Del Segura 2015–2021 https://www.chsegura.es/es/cuenca/planificacion/planificacion-2015–2021/plan-hidrologico-2015–2021/index.htmlMaster Plan for the Modernization of Irrigation in the Valencia Region, DECRETO 13/1995 de 10 de Enero, Del Gobierno Valenciano, Por El Que Se Aprueba El Plan Director de Modernización Del Regadío de la Comunidad http://www.dogv.gva.es/portal/ficha_disposicion_pc.jsp?sig=0185/1995&L=1Scheierling, S. M., Young, R. A., & Cardon, G. E. (2006). Public subsidies for water-conserving irrigation investments: Hydrologic, agronomic, and economic assessment. Water Resources Research, 42(3). doi:10.1029/2004wr003809Ward, F. A., & Pulido-Velazquez, M. (2008). Water conservation in irrigation can increase water use. Proceedings of the National Academy of Sciences, 105(47), 18215-18220. doi:10.1073/pnas.0805554105Pfeiffer, L., & Lin, C.-Y. C. (2014). Does efficient irrigation technology lead to reduced groundwater extraction? Empirical evidence. Journal of Environmental Economics and Management, 67(2), 189-208. doi:10.1016/j.jeem.2013.12.002Dagnino, M., & Ward, F. A. (2012). Economics of Agricultural Water Conservation: Empirical Analysis and Policy Implications. International Journal of Water Resources Development, 28(4), 577-600. doi:10.1080/07900627.2012.665801A Blueprint to Safeguard Europe’s Water Resources, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions 2012 https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52012DC0673&from=ENSanchis-Ibor, C., García-Mollá, M., & Avellà-Reus, L. (2016). Effects of drip irrigation promotion policies on water use and irrigation costs in Valencia, Spain. Water Policy, 19(1), 165-180. doi:10.2166/wp.2016.025LIU, B., MEI, X., LI, Y., & YANG, Y. (2007). The Connotation and Extension of Agricultural Water Resources Security. Agricultural Sciences in China, 6(1), 11-16. doi:10.1016/s1671-2927(07)60011-xMalekian, A., Hayati, D., & Aarts, N. (2017). Conceptualizations of water security in the agricultural sector: Perceptions, practices, and paradigms. Journal of Hydrology, 544, 224-232. doi:10.1016/j.jhydrol.2016.11.026Swyngedouw, E. (2013). Into the Sea: Desalination as Hydro-Social Fix in Spain. Annals of the Association of American Geographers, 103(2), 261-270. doi:10.1080/00045608.2013.754688Swyngedouw, E., & Williams, J. (2016). From Spain’s hydro-deadlock to the desalination fix. Water International, 41(1), 54-73. doi:10.1080/02508060.2016.1107705Análisis y Evaluación de Las Relaciones Entre El Agua y la Energía, Papeles de Agua Virtual 6, Madrid: Fundación Botín https://www.fundacionbotin.org/89dguuytdfr276ed_uploads/Observatorio%20Tendencias/PUBLICACIONES/MONOGRAFIAS/PAV/PAV6.pdfHardy, L., Garrido, A., & Juana, L. (2012). Evaluation of Spain’s Water-Energy Nexus. International Journal of Water Resources Development, 28(1), 151-170. doi:10.1080/07900627.2012.642240Mayor, B., López-Gunn, E., Villarroya, F. I., & Montero, E. (2015). Application of a water–energy–food nexus framework for the Duero river basin in Spain. Water International, 40(5-6), 791-808. doi:10.1080/02508060.2015.1071512La Subida de Las Tarifas Eléctricas Ahoga a Los Regantes Españoles Iagua https://www.iagua.es/noticias/tarifas/14/02/11/la-factura-electrica-de-los-regantes-se-ha-incrementado-en-mas-de-un-80-desde-2008-45084González-Pavón, C., Arviza-Valverde, J., Balbastre-Peralta, I., Carot Sierra, J. M., & Palau-Salvador, G. (2020). Are Water User Associations Prepared for a Second-Generation Modernization? The Case of the Valencian Community (Spain). Water, 12(8), 2136. doi:10.3390/w12082136Agrawal, A. (2001). Common Property Institutions and Sustainable Governance of Resources. World Development, 29(10), 1649-1672. doi:10.1016/s0305-750x(01)00063-8Wheeler, S. A., Carmody, E., Grafton, R. Q., Kingsford, R. T., & Zuo, A. (2020). The rebound effect on water extraction from subsidising irrigation infrastructure in Australia. Resources, Conservation and Recycling, 159, 104755. doi:10.1016/j.resconrec.2020.104755Grafton, R. Q., Williams, J., Perry, C. J., Molle, F., Ringler, C., Steduto, P., … Allen, R. G. (2018). The paradox of irrigation efficiency. Science, 361(6404), 748-750. doi:10.1126/science.aat931
    corecore