4 research outputs found

    Genomic Selection Signatures In Sheep From The Western Pyrenees

    Get PDF
    Background: The current large spectrum of sheep phenotypic diversity results from the combined product of sheep selection for different production traits such as wool, milk and meat, and its natural adaptation to new environments. In this study, we scanned the genome of 25 Sasi Ardi and 75 Latxa sheep from the Western Pyrenees for three types of regions under selection: (1) regions underlying local adaptation of Sasi Ardi semi-feral sheep, (2) regions related to a long traditional dairy selection pressure in Latxa sheep, and (3) regions experiencing the specific effect of the modern genetic improvement program established for the Latxa breed during the last three decades. Results: Thirty-two selected candidate regions including 147 annotated genes were detected by using three statistical parameters: pooled heterozygosity H, Tajima's D, and Wright's fixation index F-st. For Sasi Ardi sheep, chromosomes Ovis aries (OAR) 4, 6, and 22 showed the strongest signals and harbored several candidate genes related to energy metabolism and morphology (BBS9, ELOVL3 and LDB1), immunity (NFKB2), and reproduction (H2AFZ). The major genomic difference between Sasi Ardi and Latxa sheep was on OAR6, which is known to affect milk production, with highly selected regions around the ABCG2, SPP1, LAP3, NCAPG, LCORL, and MEPE genes in Latxa sheep. The effect of the modern genetic improvement program on Latxa sheep was also evident on OAR15, on which several olfactory genes are located. We also detected several genes involved in reproduction such as ESR1 and ZNF366 that were affected by this selection program. Conclusions: Natural and artificial selection have shaped the genome of both Sasi Ardi and Latxa sheep. Our results suggest that Sasi Ardi traits related to energy metabolism, morphological, reproductive, and immunological features have been under positive selection to adapt this semi-feral sheep to its particular environment. The highly selected Latxa sheep for dairy production showed clear signatures of selection in genomic regions related to milk production. Furthermore, our data indicate that the selection criteria applied in the modern genetic improvement program affect immunity and reproduction traits.The authors gratefully acknowledge support from the University of the Basque Country (UPV/EHU) and the Conservatoire des Races d'Aquitaine (US13/29

    Distribución de los grupos sanguíneos ABO y RH en una muestra de población alavesa. Estudio preliminar.

    Get PDF
    Se han analizado los sistemas sanguíneos ABO y Rh en una muestra de 200 individuos alaveses. Los resultados obtenidos en este estudio preliminar de la población alavesa, denotan cierta diferenciación con otras poblaciones vascas estudiadas, cuya naturaleza es preciso indagar con un estudio más amplio, tanto en el nº de marcadores como en la distribución geográfica de la muestra.The ABO and Rh blood groups systems have been analised in a sample of 200 individuals autochthonous from Alava. The results obtained in these preliminar study show a certain difference with the ones obtained in other basque population studies. These differences should be investigated with a much more extensive research both in the number of genetic markers and in his geograghical distribution

    Multiple SNP Markers Reveal Fine-Scale Population and Deep Phylogeographic Structure in European Anchovy (Engraulis encrasicolus L.)

    Get PDF
    10 p.Geographic surveys of allozymes, microsatellites, nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) have detected several genetic subdivisions among European anchovy populations. However, these studies have been limited in their power to detect some aspects of population structure by the use of a single or a few molecular markers, or by limited geographic sampling. We use a multi-marker approach, 47 nDNA and 15 mtDNA single nucleotide polymorphisms (SNPs), to analyze 626 European anchovies from the whole range of the species to resolve shallow and deep levels of population structure. Nuclear SNPs define 10 genetic entities within two larger genetically distinctive groups associated with oceanic variables and different life-history traits. MtDNA SNPs define two deep phylogroups that reflect ancient dispersals and colonizations. These markers define two ecological groups. One major group of Iberian-Atlantic populations is associated with upwelling areas on narrow continental shelves and includes populations spawning and overwintering in coastal areas. A second major group includes northern populations in the North East (NE) Atlantic (including the Bay of Biscay) and the Mediterranean and is associated with wide continental shelves with local larval retention currents. This group tends to spawn and overwinter in oceanic areas. These two groups encompass ten populations that differ from previously defined management stocks in the Alboran Sea, Iberian-Atlantic and Bay of Biscay regions. In addition, a new North Sea-English Channel stock is defined. SNPs indicate that some populations in the Bay of Biscay are genetically closer to North Western (NW) Mediterranean populations than to other populations in the NE Atlantic, likely due to colonizations of the Bay of Biscay and NW Mediterranean by migrants from a common ancestral population. Northern NE Atlantic populations were subsequently established by migrants from the Bay of Biscay. Populations along the Iberian-Atlantic coast appear to have been founded by secondary waves of migrants from a southern refuge.This work was supported by a research grant to IZ from the Education, Universities and Investigation Department of the Basque Government, by the European Commission (FACTS, FP7-KBBE-2009-3, grant agreement 244966) and two funded projects from the Ministry of Science and Innovation of Spain (RTA2006-00068-C02-02) and the Agriculture and Fisheries Department of the Basque Government (ECOANCHOA). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    LDLR and PCSK9 Are Associated with the Presence of Antiphospholipid Antibodies and the Development of Thrombosis in aPLA Carriers

    Get PDF
    Introduction The identification of the genetic risk factors that could discriminate non-thrombotic from thrombotic antiphospholipid antibodies (aPLA) carriers will improve prognosis of these patients. Several human studies have shown the presence of aPLAs associated with atherosclerotic plaque, which is a known risk factor for thrombosis. Hence, in order to determine the implication of atherosclerosis in the risk of developing thrombosis in aPLA positive patients, we performed a genetic association study with 3 candidate genes, APOH, LDLR and PCSK9. Material & Methods For genetic association study we analyzed 190 aPLA carriers -100 with non-thrombotic events and 90 with thrombotic events-and 557 healthy controls. Analyses were performed by chi(2) test and were corrected by false discovery rate. To evaluate the functional implication of the newly established susceptibility loci, we performed expression analyses in 86 aPLA carrier individuals (43 with thrombotic manifestations and 43 without it) and in 45 healthy controls. Results Our results revealed significant associations after correction in SNPs located in LDLR gene with aPLA carriers and thrombotic aPLA carriers, when compared with healthy controls. The most significant association in LDLR gene was found between SNP rs129083082 and aPLA carriers in recessive model (adjusted P-value = 2.55 x 10(-3); OR = 2.18; 95% CI = 1.49-3.21). Furthermore, our work detected significant allelic association after correction between thrombotic aPLA carriers and healthy controls in SNP rs562556 located in PCSK9 gene (adjusted P-value = 1.03 x 10(-2); OR = 1.60; 95% CI = 1.24-2.06). Expression level study showed significantly decreased expression level of LDLR gene in aPLA carriers (P-value < 0.0001; 95% CI 0.16-2.10; SE 0.38-1.27) in comparison to the control group. Discussion Our work has identified LDLR gene as a new susceptibility gene associated with the development of thrombosis in aPLA carriers, describing for the first time the deregulation of LDLR expression in individuals with aPLAs. Besides, thrombotic aPLA carriers also showed significant association with PCSK9 gene, a regulator of LDLR plasma levels. These results highlight the importance of atherosclerotic processes in the development of thrombosis in patients with aPLA.Support was provided by the Basque Government (www.euskadi.eus/) Etortek IE09-256, Saiotek S-PE10UN82, Plan +Euskadi 09UE09+/57, Saiotek-PE08UN73 and Saiotek-PE09UN64; and by the University of the Basque Country (www.ehu.eus/) UFI 11/20. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
    corecore