49 research outputs found

    Artery tertiary lymphoid organs control multi-layered territorialized atherosclerosis B cell responses in aged ApoE-/- mice

    Get PDF
    Objective: Explore aorta B cell immunity in aged ApoE-/- mice. Approach and Results: Transcript maps, FACS, immunofluorescence analyses, cell transfers, and Ig-ELISPOT assays showed multi-layered atherosclerosis B cell responses in artery tertiary lymphoid organs (ATLOs). Aging-associated aorta B cell-related transcriptomes were identified and transcript atlases revealed highly territorialized B cell responses in ATLOs versus atherosclerotic lesions: ATLOs showed upregulation of bona fide B cell genes including Cd19, Ms4a1 (Cd20), Cd79a/b, and Ighm though intima plaques preferentially expressed molecules involved in non-B effector responses towards B cell-derived mediators, i.e. Fcgr3 (Cd16), Fcer1g (Cd23), and the C1q family. ATLOs promoted B cell recruitment. ATLO B-2 B cells included naïve, transitional, follicular, germinal center, switched IgG1+, IgA+, and IgE+ memory cells, plasmablasts, and long-lived plasma cells (PCs). ATLOs recruited large numbers of B-1 cells whose subtypes were skewed towards IL-10+ B-1b cells versus IL-10- B-1a cells. ATLO B-1 cells and PCs constitutively produced IgM and IgG and a fraction of PCs expressed IL-10. Moreover, ApoE-/- mice showed increased germinal center B cells in renal lymph nodes, IgM-producing PCs in the bone marrow, and higher IgM and anti-MDA-LDL IgG serum titers. Conclusions: ATLOs orchestrate dichotomic, territorialized, and multi-layered B cell responses in the diseased aorta; germinal center reactions indicate generation of autoimmune B cells within the diseased arterial wall during aging

    The sympathomimetic agonist mirabegron did not lower JAK2-V617F allele burden, but restored nestin-positive cells and reduced reticulin fibrosis in patients with myeloproliferative neoplasms: results of phase II study SAKK 33/14

    Full text link
    The β-3 sympathomimetic agonist BRL37344 restored nestin-positive cells within the stem cell niche, and thereby normalized blood counts and improved myelofibrosis in a mouse model of JAK2-V617F positive myeloproliferative neoplasms. We therefore tested the effectiveness of mirabegron, a β-3 sympathomimetic agonist, in a phase II trial including 39 JAK2-V617F positive MPN with a mutant allele burden >20%. Treatment consisted of mirabegron 50 mg daily for 24 weeks. The primary endpoint, reduction of the JAK2-V617F allele burden ≥50%, was not reached in any of the patients. One patient achieved a 25% reduction in JAK2-V617F allele burden by 24 weeks. A small subgroup of patients showed hematological improvement. As a side study, bone marrow biopsies were evaluated in 20 patients.We found an increase in the nestin+ cells from a median of 1.09 (interquartile range 0.38-3.27)/mm2 to 3.95 (interquartile range 1.98-8.79)/mm2 (p<0.0001) and a slight decrease of reticulin fibrosis from a median grade of 1.0 (interquartile range 0-3) to 0.5 (interquartile range 0-2) (p=0.01) between start and end of mirabegron treatment. Despite the fact that the primary endpoint of reducing JAK2-V617F allele burden was not reached, the observed effects on nestin+ MSCs and reticulin fibrosis is encouraging and shows that mirabegron can modify the microenvironment where the JAK2-mutant stem cells are maintained

    Oral Biofilm Architecture on Natural Teeth

    Get PDF
    Periodontitis and caries are infectious diseases of the oral cavity in which oral biofilms play a causative role. Moreover, oral biofilms are widely studied as model systems for bacterial adhesion, biofilm development, and biofilm resistance to antibiotics, due to their widespread presence and accessibility. Despite descriptions of initial plaque formation on the tooth surface, studies on mature plaque and plaque structure below the gum are limited to landmark studies from the 1970s, without appreciating the breadth of microbial diversity in the plaque. We used fluorescent in situ hybridization to localize in vivo the most abundant species from different phyla and species associated with periodontitis on seven embedded teeth obtained from four different subjects. The data showed convincingly the dominance of Actinomyces sp., Tannerella forsythia, Fusobacterium nucleatum, Spirochaetes, and Synergistetes in subgingival plaque. The latter proved to be new with a possibly important role in host-pathogen interaction due to its localization in close proximity to immune cells. The present study identified for the first time in vivo that Lactobacillus sp. are the central cells of bacterial aggregates in subgingival plaque, and that Streptococcus sp. and the yeast Candida albicans form corncob structures in supragingival plaque. Finally, periodontal pathogens colonize already formed biofilms and form microcolonies therein. These in vivo observations on oral biofilms provide a clear vision on biofilm architecture and the spatial distribution of predominant species

    Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition)

    Get PDF
    The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer‐reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state‐of‐the‐art handbook for basic and clinical researchers.DFG, 389687267, Kompartimentalisierung, Aufrechterhaltung und Reaktivierung humaner Gedächtnis-T-Lymphozyten aus Knochenmark und peripherem BlutDFG, 80750187, SFB 841: Leberentzündungen: Infektion, Immunregulation und KonsequenzenEC/H2020/800924/EU/International Cancer Research Fellowships - 2/iCARE-2DFG, 252623821, Die Rolle von follikulären T-Helferzellen in T-Helferzell-Differenzierung, Funktion und PlastizitätDFG, 390873048, EXC 2151: ImmunoSensation2 - the immune sensory syste

    A Novel Role for C5a in B-1 Cell Homeostasis

    No full text
    B-1 cells constitute a unique subpopulation of lymphocytes residing mainly in body cavities like the peritoneal cavity (PerC) but are also found in spleen and bone marrow (BM). As innate-like B cells, they mediate first line immune defense through low-affinity natural IgM (nIgM) antibodies. PerC B-1 cells can egress to the spleen and differentiate into nIgM antibody-secreting plasma cells that recognize conserved exogenous and endogenous cellular structures. Homing to and homeostasis within the PerC are regulated by the chemokine CXCL13 released by PerC macrophages and stroma cells. However, the exact mechanisms underlying the regulation of CXCL13 and B-1 homeostasis are not fully explored. B-1 cells play important roles in the inflammatory response to infection, autoimmunity, ischemia/reperfusion injury, obesity, and atherosclerosis. Remarkably, this list of inflammatory entities has a strong overlap with diseases that are regulated by complement suggesting a link between B-1 cells and the complement system. Interestingly, up to now, no data exist regarding the role of complement in B-1 cell biology. Here, we demonstrate for the first time that C5a regulates B-1 cell steady-state dynamics within the peritoneum, the spleen, and the BM. We found decreased B-1a cell numbers in the peritoneum and the spleen of C5aR1−/− mice associated with increased B1-a and B1-b numbers in the spleen and high serum titers of nIgM antibodies directed against phosphorylcholine and several pneumococcal polysaccharides. Similarly, peritoneal B-1a cells were decreased in the peritoneum and splenic B-1a and B-1b cells were increased in C5aR2−/− mice. The decrease in peritoneal B-1 cell numbers was associated with decreased peritoneal CXCL13 levels in C5aR1−/− and C5aR2−/− mice. In search for mechanisms, we found that combined TLR2 and IL-10 receptor activation in PerC macrophages induced strong CXCL13 production, which was significantly reduced in cells from C5aR1- and C5aR2-deficient mice and after combined C5aR-targeting. Such stimulation also induced marked local C5 production by PerC macrophages and C5a generation. Importantly, peritoneal in vivo administration of C5a increased CXCL13 production. Taken together, our findings suggest that local non-canonical C5 activation in PerC macrophages fuels CXCL13 production as a novel mechanism to control B-1 cell homeostasis
    corecore