11 research outputs found

    Hemoglobin Video Imaging Provides Novel In Vivo High-Resolution Imaging and Quantification of Human Aqueous Outflow in Patients with Glaucoma

    Get PDF
    Purpose: Noninvasive, detailed measurement of the dynamics of human aqueous outflow is difficult to achieve with currently available clinical tools. We used hemoglobin video imaging (HVI) to develop a technique to image and quantify human aqueous outflow noninvasively and in real time. Design: A prospective observational study to describe characteristics of aqueous veins and a pilot prospective interventional feasibility study to develop quantification parameters. Participants: Patients were recruited from the Cambridge University Hospitals NHS Foundation Trust Glaucoma clinic. The observational study included 30 eyes, and the pilot interventional feasibility study was performed on 8 eyes undergoing selective laser trabeculoplasty (SLT). Our SLT protocol also included the installation of pilocarpine and apraclonidine eye drops. Methods: Participants underwent HVI alongside their usual clinic visit. Main Outcome Measures: The change in cross-sectional area (CSA) of the aqueous column within episcleral veins was correlated with intraocular pressure (IOP) reduction and change in visual field mean deviation (MD) before and after intervention. Fluctuations in contrast and pixel intensity of red blood cells in an aqueous vein were calculated to compare the flow rate before and after intervention using autocorrelation analysis. Results: Hemoglobin video imaging enables the direct observation of aqueous flow into the vascular system. Aqueous is seen to centralize within a laminar venous column. Flow is pulsatile, and fluctuations of flow through globe pressure or compression of the aqueous vein are observed. There was a significant increase in the aqueous column after the administration of our SLT protocol (n = 13; P < 0.05). This correlated with the degree of IOP reduction (n = 13; Pearson's correlation coefficient 0.7; P = 0.007) and the improvement in MD observed postintervention (n = 8; Pearson's correlation coefficient 0.75; P = 0.03). Autocorrelation analysis demonstrated a faster rate of decay in an aqueous vein after intervention, indicating an increase in flow rate. Conclusions: Hemoglobin video imaging can be incorporated into a routine clinic slit-lamp examination to allow a detailed assessment and quantification of aqueous outflow in real time. It has the potential to be used to help target therapeutic interventions to improve aqueous outflow and further advance our understanding of aqueous outflow dysregulation in the pathogenesis of glaucoma

    Hollow-core optical fibre sensors for operando Raman spectroscopy investigation of Li-ion battery liquid electrolytes

    No full text
    Improved analytical tools are urgently required to identify degradation and failure mechanisms in Li-ion batteries. However, understanding and ultimately avoiding these detrimental mechanisms requires continuous tracking of complex electrochemical processes in different battery components. Here, we report an operando spectroscopy method that enables monitoring the chemistry of a carbonate-based liquid electrolyte during electrochemical cycling in Li-ion batteries with a graphite anode and a LiNi0.8Mn0.1Co0.1O2 cathode. By embedding a hollow-core optical fibre probe inside a lab-scale pouch cell, we demonstrate the effective evolution of the liquid electrolyte species by background-free Raman spectroscopy. The analysis of the spectroscopy measurements reveals changes in the ratio of carbonate solvents and electrolyte additives as a function of the cell voltage and show the potential to track the lithium-ion solvation dynamics. The proposed operando methodology contributes to understanding better the current Li-ion battery limitations and paves the way for studies of the degradation mechanisms in different electrochemical energy storage systems
    corecore