344 research outputs found

    Gender, Epistemology, and Education: An Exploration of the Knowledge Construction of Female and Male Pupils

    Get PDF
    This study explores gender differences in the knowledge constructed about World War II by 11- and 12-year-old Scottish pupils. Data collected over seven months included field notes, interviews, students\u27 reading and writing, and audiotapes of discussions. Examination revealed the young women\u27s work showcased individuals while the young men framed World War II information using a world view. The findings illustrate the epistemological differences that can exist between our male and female students as they construct their own understanding of topics

    A Class of Topological Actions

    Full text link
    We review definitions of generalized parallel transports in terms of Cheeger-Simons differential characters. Integration formulae are given in terms of Deligne-Beilinson cohomology classes. These representations of parallel transport can be extended to situations involving distributions as is appropriate in the context of quantized fields.Comment: 41 pages, no figure

    Critical Exponents of the N-vector model

    Full text link
    Recently the series for two RG functions (corresponding to the anomalous dimensions of the fields phi and phi^2) of the 3D phi^4 field theory have been extended to next order (seven loops) by Murray and Nickel. We examine here the influence of these additional terms on the estimates of critical exponents of the N-vector model, using some new ideas in the context of the Borel summation techniques. The estimates have slightly changed, but remain within errors of the previous evaluation. Exponents like eta (related to the field anomalous dimension), which were poorly determined in the previous evaluation of Le Guillou--Zinn-Justin, have seen their apparent errors significantly decrease. More importantly, perhaps, summation errors are better determined. The change in exponents affects the recently determined ratios of amplitudes and we report the corresponding new values. Finally, because an error has been discovered in the last order of the published epsilon=4-d expansions (order epsilon^5), we have also reanalyzed the determination of exponents from the epsilon-expansion. The conclusion is that the general agreement between epsilon-expansion and 3D series has improved with respect to Le Guillou--Zinn-Justin.Comment: TeX Files, 27 pages +2 figures; Some values are changed; references update

    Warped Tachyonic Inflation in Type IIB Flux Compactifications and the Open-String Completeness Conjecture

    Full text link
    We consider a cosmological scenario within the KKLT framework for moduli stabilization in string theory. The universal open string tachyon of decaying non-BPS D-brane configurations is proposed to drive eternal topological inflation. Flux-induced `warping' can provide the small slow-roll parameters needed for successful inflation. Constraints on the parameter space leading to sufficient number of e-folds, exit from inflation, density perturbations and stabilization of the Kahler modulus are investigated. The conditions are difficult to satisfy in Klebanov-Strassler throats but can be satisfied in T^3 fibrations and other generic Calabi-Yau manifolds. This requires large volume and magnetic fluxes on the D-brane. The end of inflation may or may not lead to cosmic strings depending on the original non-BPS configuration. A careful investigation of initial conditions leading to a phenomenologically viable model for inflation is carried out. The initial conditions are chosen on the basis of Sen's open string completeness conjecture. We find time symmetrical bounce solutions without initial singularities for k=1 FRW models which are correlated with an inflationary period. Singular big-bang/big-crunch solutions also exist but do not lead to inflation. There is an intriguing correlation between having an inflationary universe in 4 dimensions and 6 compact dimensions or a big-crunch singularity and decompactification.Comment: 43 pages, 9 figures. v3: Typos correcte

    Inflation in Realistic D-Brane Models

    Full text link
    We find successful models of D-brane/anti-brane inflation within a string context. We work within the GKP-KKLT class of type IIB string vacua for which many moduli are stabilized through fluxes, as recently modified to include `realistic' orbifold sectors containing standard-model type particles. We allow all moduli to roll when searching for inflationary solutions and find that inflation is not generic inasmuch as special choices must be made for the parameters describing the vacuum. But given these choices inflation can occur for a reasonably wide range of initial conditions for the brane and antibrane. We find that D-terms associated with the orbifold blowing-up modes play an important role in the inflationary dynamics. Since the models contain a standard-model-like sector after inflation, they open up the possibility of addressing reheating issues. We calculate predictions for the CMB temperature fluctuations and find that these can be consistent with observations, but are generically not deep within the scale-invariant regime and so can allow appreciable values for dns/dln⁥kdn_s/d\ln k as well as predicting a potentially observable gravity-wave signal. It is also possible to generate some admixture of isocurvature fluctuations.Comment: 39 pages, 21 figures; added references; identified parameters combining successful inflation with strong warping, as needed for consistency of the approximation

    Establishing an infrastructure for collaboration in primate cognition research

    Get PDF
    Inferring the evolutionary history of cognitive abilities requires large and diverse samples. However, such samples are often beyond the reach of individual researchers or institutions, and studies are often limited to small numbers of species. Consequently, methodological and site-specific-differences across studies can limit comparisons between species. Here we introduce the ManyPrimates project, which addresses these challenges by providing a large-scale collaborative framework for comparative studies in primate cognition. To demonstrate the viability of the project we conducted a case study of short-term memory. In this initial study, we were able to include 176 individuals from 12 primate species housed at 11 sites across Africa, Asia, North America and Europe. All subjects were tested in a delayed-response task using consistent methodology across sites. Individuals could access food rewards by remembering the position of the hidden reward after a 0, 15, or 30-second delay. Overall, individuals performed better with shorter delays, as predicted by previous studies. Phylogenetic analysis revealed a strong phylogenetic signal for short-term memory. Although, with only 12 species, the validity of this analysis is limited, our initial results demonstrate the feasibility of a large, collaborative open-science project. We present the ManyPrimates project as an exciting opportunity to address open questions in primate cognition and behaviour with large, diverse datasets

    Supersymmetry Without Prejudice

    Full text link
    We begin an exploration of the physics associated with the general CP-conserving MSSM with Minimal Flavor Violation, the pMSSM. The 19 soft SUSY breaking parameters in this scenario are chosen so as to satisfy all existing experimental and theoretical constraints assuming that the WIMP is a conventional thermal relic, ie, the lightest neutralino. We scan this parameter space twice using both flat and log priors for the soft SUSY breaking mass parameters and compare the results which yield similar conclusions. Detailed constraints from both LEP and the Tevatron searches play a particularly important role in obtaining our final model samples. We find that the pMSSM leads to a much broader set of predictions for the properties of the SUSY partners as well as for a number of experimental observables than those found in any of the conventional SUSY breaking scenarios such as mSUGRA. This set of models can easily lead to atypical expectations for SUSY signals at the LHC.Comment: 61 pages, 24 figs. Refs., figs, and text added, typos fixed; This version has reduced/bitmapped figs. For a version with better figs please go to http://www.slac.stanford.edu/~rizz

    Optimization of percutaneous biopsy for diagnosis and pretreatment risk assessment of neuroblastoma

    Get PDF
    BackgroundImage- guided percutaneous core needle biopsy (PCNB) is increasingly utilized to diagnose solid tumors. The objective of this study is to determine whether PCNB is adequate for modern biologic characterization of neuroblastoma.ProcedureA multi- institutional retrospective study was performed by the Pediatric Surgical Oncology Research Collaborative on children with neuroblastoma at 12 institutions over a 3- year period. Data collected included demographics, clinical details, biopsy technique, complications, and adequacy of biopsies for cytogenetic markers utilized by the Children’s Oncology Group for risk stratification.ResultsA total of 243 children were identified with a diagnosis of neuroblastoma: 79 (32.5%) tumor excision at diagnosis, 94 (38.7%) open incisional biopsy (IB), and 70 (28.8%) PCNB. Compared to IB, there was no significant difference in ability to accurately obtain a primary diagnosis by PCNB (95.7% vs 98.9%, P = .314) or determine MYCN copy number (92.4% vs 97.8%, P = .111). The yield for loss of heterozygosity and tumor ploidy was lower with PCNB versus IB (56.1% vs 90.9%, P < .05; and 58.0% vs. 88.5%, P < .05). Complications did not differ between groups (2.9 % vs 3.3%, P = 1.000), though the PCNB group had fewer blood transfusions and lower opioid usage. Efficacy of PCNB was improved for loss of heterozygosity when a pediatric pathologist evaluated the fresh specimen for adequacy.ConclusionsPCNB is a less invasive alternative to open biopsy for primary diagnosis and MYCN oncogene status in patients with neuroblastoma. Our data suggest that PCNB could be optimized for complete genetic analysis by standardized protocols and real- time pathology assessment of specimen quality.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154667/1/pbc28153_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154667/2/pbc28153.pd

    Solutions of the Two-Dimensional Hubbard Model: Benchmarks and Results from a Wide Range of Numerical Algorithms

    Get PDF
    Numerical results for ground-state and excited-state properties (energies, double occupancies, and Matsubara-axis self-energies) of the single-orbital Hubbard model on a two-dimensional square lattice are presented, in order to provide an assessment of our ability to compute accurate results in the thermodynamic limit. Many methods are employed, including auxiliary-field quantum Monte Carlo, bare and bold-line diagrammatic Monte Carlo, method of dual fermions, density matrix embedding theory, density matrix renormalization group, dynamical cluster approximation, diffusion Monte Carlo within a fixed-node approximation, unrestricted coupled cluster theory, and multireference projected Hartree-Fock methods. Comparison of results obtained by different methods allows for the identification of uncertainties and systematic errors. The importance of extrapolation to converged thermodynamic-limit values is emphasized. Cases where agreement between different methods is obtained establish benchmark results that may be useful in the validation of new approaches and the improvement of existing methods
    • 

    corecore