7 research outputs found

    OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis

    Get PDF
    Sixteen ovarian tumor (OTU) family deubiquitinases (DUBs) exist in humans, and most members regulate cell-signaling cascades. Several OTU DUBs were reported to be ubiquitin (Ub) chain linkage specific, but comprehensive analyses are missing, and the underlying mechanisms of linkage specificity are unclear. Using Ub chains of all eight linkage types, we reveal that most human OTU enzymes are linkage specific, preferring one, two, or a defined subset of linkage types, including unstudied atypical Ub chains. Biochemical analysis and five crystal structures of OTU DUBs with or without Ub substrates reveal four mechanisms of linkage specificity. Additional Ub-binding domains, the ubiquitinated sequence in the substrate, and defined S1’ and S2 Ub-binding sites on the OTU domain enable OTU DUBs to distinguish linkage types. We introduce Ub chain restriction analysis, in which OTU DUBs are used as restriction enzymes to reveal linkage type and the relative abundance of Ub chains on substrates

    Structure of a Chaperone-Usher Pilus reveals the molecular basis of rod uncoiling

    Get PDF
    Types 1 and P pili are prototypical bacterial cell-surface appendages playing essential roles in mediating adhesion of bacteria to the urinary tract. These pili, assembled by the chaperone-usher pathway, are polymers of pilus subunits assembling into two parts: a thin, short tip fibrillum at the top, mounted on a long pilus rod. The rod adopts a helical quaternary structure and is thought to play essential roles: its formation may drive pilus extrusion by preventing backsliding of the nascent growing pilus within the secretion pore; the rod also has striking spring-like properties, being able to uncoil and recoil depending on the intensity of shear forces generated by urine flow. Here, we present an atomic model of the P pilus generated from a 3.8 Å resolution cryo-electron microscopy reconstruction. This structure provides the molecular basis for the rod’s remarkable mechanical properties and illuminates its role in pilus secretion

    The assembly platform FimD is required to obtain the most stable quaternary structure of type 1 pili

    No full text
    Type 1 pili are important virulence factors of uropathogenic Escherichia coli that mediate bacterial attachment to epithelial cells in the urinary tract. The pilus rod is comprised of thousands of copies of the main structural subunit FimA and is assembled in vivo by the assembly platform FimD. Although type 1 pilus rods can self-assemble from FimA in vitro, this reaction is slower and produces structures with lower kinetic stability against denaturants compared to in vivo-assembled rods. Our study reveals that FimD-catalysed in vitro-assembled type 1 pilus rods attain a similar stability as pilus rods assembled in vivo. Employing structural, biophysical and biochemical analyses, we show that in vitro assembly reactions lacking FimD produce pilus rods with structural defects, reducing their stability against dissociation. Overall, our results indicate that FimD is not only required for the catalysis of pilus assembly, but also to control the assembly of the most stable quaternary structure.ISSN:2041-172

    Deubiquitinase-based analysis of ubiquitin chain architecture using Ubiquitin Chain Restriction (UbiCRest)

    No full text
    Protein ubiquitination is a versatile protein modification that regulates virtually all cellular processes. This versatility originates from polyubiquitin chains, which can be linked in eight distinct ways. The combinatorial complexity of eight linkage types in homotypic (one chain type per polymer) and heterotypic (multiple linkage types per polymer) chains poses significant problems for biochemical analysis. Here we describe UbiCRest, in which substrates (ubiquitinated proteins or polyubiquitin chains) are treated with a panel of linkage-specific deubiquitinating enzymes (DUBs) in parallel reactions, followed by gel-based analysis. UbiCRest can be used to show that a protein is ubiquitinated, to identify which linkage type(s) are present on polyubiquitinated proteins and to assess the architecture of heterotypic polyubiquitin chains. DUBs used in UbiCRest can be obtained commercially; however, we include details for generating a toolkit of purified DUBs and for profiling their linkage preferences in vitro. UbiCRest is a qualitative method that yields insights into ubiquitin chain linkage types and architecture within hours, and it can be performed on western blotting quantities of endogenously ubiquitinated proteins

    OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis

    Get PDF
    SummarySixteen ovarian tumor (OTU) family deubiquitinases (DUBs) exist in humans, and most members regulate cell-signaling cascades. Several OTU DUBs were reported to be ubiquitin (Ub) chain linkage specific, but comprehensive analyses are missing, and the underlying mechanisms of linkage specificity are unclear. Using Ub chains of all eight linkage types, we reveal that most human OTU enzymes are linkage specific, preferring one, two, or a defined subset of linkage types, including unstudied atypical Ub chains. Biochemical analysis and five crystal structures of OTU DUBs with or without Ub substrates reveal four mechanisms of linkage specificity. Additional Ub-binding domains, the ubiquitinated sequence in the substrate, and defined S1’ and S2 Ub-binding sites on the OTU domain enable OTU DUBs to distinguish linkage types. We introduce Ub chain restriction analysis, in which OTU DUBs are used as restriction enzymes to reveal linkage type and the relative abundance of Ub chains on substrates

    A comprehensive guide to pilus biogenesis in Gram-negative bacteria

    Get PDF
    Pili are crucial virulence factors for many Gram-negative pathogens. These surface structures provide bacteria with a link to their external environments by enabling them to interact with, and attach to, host cells, other surfaces or each other, or by providing a conduit for secretion. Recent high-resolution structures of pilus filaments and the machineries that produce them, namely chaperone-usher pili, type IV pili, conjugative type IV secretion pili and type V pili, are beginning to explain some of the intriguing biological properties that pili exhibit, such as the ability of chaperone-usher pili and type IV pili to stretch in response to external forces. By contrast, conjugative pili provide a conduit for the exchange of genetic information, and recent high-resolution structures have revealed an integral association between the pilin subunit and a phospholipid molecule, which may facilitate DNA transport. In addition, progress in the area of cryo-electron tomography has provided a glimpse of the overall architecture of the type IV pilus machinery. In this Review, we examine recent advances in our structural understanding of various Gram-negative pilus systems and discuss their functional implications
    corecore