7,642 research outputs found

    Systematic Differential Renormalization to All Orders

    Full text link
    We present a systematic implementation of differential renormalization to all orders in perturbation theory. The method is applied to individual Feynamn graphs written in coordinate space. After isolating every singularity. which appears in a bare diagram, we define a subtraction procedure which consists in replacing the core of the singularity by its renormalized form givenby a differential formula. The organizationof subtractions in subgraphs relies in Bogoliubov's formula, fulfilling the requirements of locality, unitarity and Lorentz invariance. Our method bypasses the use of an intermediate regularization andautomatically delivers renormalized amplitudes which obey renormalization group equations.Comment: TEX, 20 pages, UB-ECM-PF 93/4, 1 figureavailable upon reques

    Effects of semiclassical spiral fluctuations on hole dynamics

    Full text link
    We investigate the dynamics of a single hole coupled to the spiral fluctuations related to the magnetic ground states of the antiferromagnetic J_1-J_2-J_3 Heisenberg model on a square lattice. Using exact diagonalization on finite size clusters and the self consistent Born approximation in the thermodynamic limit we find, as a general feature, a strong reduction of the quasiparticle weight along the spiral phases of the magnetic phase diagram. For an important region of the Brillouin Zone the hole spectral functions are completely incoherent, whereas at low energies the spectral weight is redistributed on several irregular peaks. We find a characteristic value of the spiral pitch, Q=(0.7,0.7)\pi, for which the available phase space for hole scattering is maximum. We argue that this behavior is due to the non trivial interference of the magnon assisted and the free hopping mechanism for hole motion, characteristic of a hole coupled to semiclassical spiral fluctuations.Comment: 6 pages, 5 figure

    Assessing vulnerabilities in IoT-based ambient assisted living systems

    Get PDF
    Ambient Assisted Living systems aim at providing automated support to humans with special needs. Smart Homes equipped with Internet of Things infrastructure supporting the development of Ambient Intelligence which can look after humans is being widely investigated worldwide. As any IT based system, these have strengths and also weaknesses. One dimension of these systems developers want to strengthen is security, eliminating or at least reducing as much as possible potential threats. The motivation is clear, as these systems gather sensitive information about the health of an individual there is potential for harm if that information is accessed and used by the wrong person. This chapter starts by providing an analysis of stakeholders in this area. Then explains the IoT infrastructure used as a testbed for the main security analysis methods and tools. Finally it explains a process to assess the likelihood of certain vulnerabilities in the system. This process is mainly focused on the design stage of a system. It can be iteratively combined with development to inform a developing team which system architectures may be safer and worth given development priority

    Global Disk Oscillation Modes in Cataclysmic Variables and Other Newtonian Accretors

    Full text link
    Diskoseismology, the theoretical study of small adiabatic hydrodynamical global perturbations of geometrically thin, optically thick accretion disks around black holes (and other compact objects), is a potentially powerful probe of the gravitational field. For instance, the frequencies of the normal mode oscillations can be used to determine the elusive angular momentum parameter of the black hole. The general formalism developed by diskoseismologists for relativistic systems can be readily applied to the Newtonian case of cataclysmic variables (CVs). Some of these systems (e.g., the dwarf nova SS Cygni) show rapid oscillations in the UV with periods of tens of seconds and high coherence. In this paper, we assess the possibility that these dwarf nova oscillations (DNOs) are diskoseismic modes. Besides its importance in investigating the physical origin of DNOs, the present work could help us to answer the following question. To what extent are the similarities in the oscillation phenomenology of CVs and X-ray binaries (XRBs) indicative of a common physical mechanism?Comment: 1 figur

    Spin polaron in the J1-J2 Heisenberg model

    Full text link
    We have studied the validity of the spin polaron picture in the frustrated J1-J2 Heisenberg model. For this purpose, we have computed the hole spectral functions for the Neel, collinear, and disordered phases of this model, by means of the self-consistent Born approximation and Lanczos exact diagonalization on finite-size clusters. We have found that the spin polaron quasiparticle excitation is always well defined for the magnetically ordered Neel and collinear phases, even in the vicinity of the magnetic quantum critical points, where the local magnetization vanishes. As a general feature, the effect of frustration is to increase the amplitude of the multimagnon states that build up the spin polaron wave function, leading to the reduction of the quasiparticle coherence. Based on Lanczos results, we discuss the validity of the spin polaron picture in the disordered phase.Comment: 9 pages, 12 figure

    Interplay between Zeeman interaction and spin-orbit coupling in a two-dimensional semiconductor system

    Full text link
    We analyse the interplay between Dresselhaus, Bychkov-Rashba, and Zeeman interactions in a two-dimensional semiconductor quantum system under the action of a magnetic field. When a vertical magnetic field is considered, we predict that the interplay results in an effective cyclotron frequency that depends on a spin-dependent contribution. For in-plane magnetic fields, we found that the interplay induces an anisotropic effective gyromagnetic factor that depends on the orientation of the applied field as well as on the orientation of the electron momentum.Comment: 5 page

    Magnetic Color Flavor Locking Phase in High Density QCD

    Full text link
    We investigate the effects of an external magnetic field in the gap structure of a color superconductor with three massless quark flavors. Using an effective theory with four-fermion interactions, inspired by one-gluon exchange, we show that the long-range component B~\widetilde{B} of the external magnetic field that penetrates the color-flavor locked (CFL) phase modifies its gap structure, producing a new phase of lower symmetry. A main outcome of our study is that the B~\widetilde{B} field tends to strengthen the gaps formed by Q~\widetilde{Q}-charged and Q~\widetilde{Q}-neutral quarks that coupled among themselves through tree-level vertices. These gaps are enhanced by the field-dependent density of states of the Q~\widetilde{Q}-charged quarks on the Fermi surface. Our considerations are relevant for the study of highly magnetized compact stars.Comment: version to be published in PR

    Structure determination of Split-soret Cytochrome from a Desulfovibrio species isolated from a human abdominal abcess

    Get PDF
    The determined structure of the split-soret cytochrome (SSC) isolated from Desulfovibrio desulfuricans ATCC 27774 (D.d.) revealed a new Heme arrangement, which suggests that this protein constitutes a new cytochrome class.. SSC is a 52.6kDa homodimer containing four hemes at one end of the molecule. In each monomer the two hemes have their edges overlapped within van der Waals contacts. The polypeptide chain of each monomer supplies the sixth ligand to the heme-iron of the other monomer. A similar protein was recently purified from a homologous Desulfovibrio clinical strain isolated from an abdominal wall abscess in human patient2. Crystals of this SSC were grown using vapour diffusion method in the presence of agarose gel. Diffraction data were collected using X-ray synchrotron radiation at the ESRF, beamline, ID 14-1. The structure will be solved by molecular replacement using the structure of the D.d. as a starting model

    The monoclinic crystal structure of α\alpha-RuCl3_3 and the zigzag antiferromagnetic ground state

    Full text link
    The layered honeycomb magnet alpha-RuCl3 has been proposed as a candidate to realize a Kitaev spin model with strongly frustrated, bond-dependent, anisotropic interactions between spin-orbit entangled jeff=1/2 Ru4+ magnetic moments. Here we report a detailed study of the three-dimensional crystal structure using x-ray diffraction on untwinned crystals combined with structural relaxation calculations. We consider several models for the stacking of honeycomb layers and find evidence for a crystal structure with a monoclinic unit cell corresponding to a stacking of layers with a unidirectional in-plane offset, with occasional in-plane sliding stacking faults, in contrast with the currently-assumed trigonal 3-layer stacking periodicity. We report electronic band structure calculations for the monoclinic structure, which find support for the applicability of the jeff=1/2 picture once spin orbit coupling and electron correlations are included. We propose that differences in the magnitude of anisotropic exchange along symmetry inequivalent bonds in the monoclinic cell could provide a natural mechanism to explain the spin gap observed in powder inelastic neutron scattering, in contrast to spin models based on the three-fold symmetric trigonal structure, which predict a gapless spectrum within linear spin wave theory. Our susceptibility measurements on both powders and stacked crystals, as well as neutron powder diffraction show a single magnetic transition at TN ~ 13K. The analysis of the neutron data provides evidence for zigzag magnetic order in the honeycomb layers with an antiferromagnetic stacking between layers. Magnetization measurements on stacked single crystals in pulsed field up to 60T show a single transition around 8T for in-plane fields followed by a gradual, asymptotic approach to magnetization saturation, as characteristic of strongly anisotropic exchange interactions.Comment: 13 pages, 9 figures, published in Physical Review

    Magnetic Phases in Three-Flavor Color Superconductivity

    Get PDF
    The best natural candidates for the realization of color superconductivity are quark stars -not yet confirmed by observation- and the extremely dense cores of compact stars, many of which have very large magnetic fields. To reliably predict astrophysical signatures of color superconductivity, a better understanding of the role of the star's magnetic field in the color superconducting phase that realizes in the core is required. This paper is an initial step in that direction. The field scales at which the different magnetic phases of a color superconductor with three quark flavors can be realized are investigated. Coming from weak to strong fields, the system undergoes first a symmetry transmutation from a Color-Flavor-Locked (CFL) phase to a Magnetic-CFL (MCFL) phase, and then a phase transition from the MCFL phase to the Paramagnetic-CFL (PCFL) phase. The low-energy effective theory for the excitations of the diquark condensate in the presence of a magnetic field is derived using a covariant representation that takes into account all the Lorentz structures contributing at low energy. The field-induced masses of the charged mesons and the threshold field at which the CFL \to MCFL symmetry transmutation occurs are obtained in the framework of this low-energy effective theory. The relevance of the different magnetic phases for the physics of compact stars is discussed.Comment: Version to appear in PR
    corecore